* Package:    sci-biology/neuroconv-0.4.8:0
 * Repository: science
 * Maintainer: gentoo@chymera.eu sci@gentoo.org
 * USE:        abi_x86_64 amd64 ecephys elibc_glibc icephys kernel_linux ophys python_targets_python3_11 test
 * FEATURES:   network-sandbox preserve-libs sandbox test userpriv usersandbox
>>> Unpacking source...
>>> Unpacking neuroconv-0.4.8.gh.tar.gz to /var/tmp/portage/sci-biology/neuroconv-0.4.8/work
>>> Source unpacked in /var/tmp/portage/sci-biology/neuroconv-0.4.8/work
>>> Preparing source in /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8 ...
 * Build system packages:
 *   dev-python/gpep517            : 15
 *   dev-python/installer          : 0.7.0
 *   dev-python/setuptools         : 69.0.3
 *   dev-python/setuptools-rust    : 1.8.1
 *   dev-python/setuptools-scm     : 8.0.4
 *   dev-python/wheel              : 0.42.0
>>> Source prepared.
>>> Configuring source in /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8 ...
>>> Source configured.
>>> Compiling source in /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8 ...
 * python3_11: running distutils-r1_run_phase distutils-r1_python_compile
 *   Building the wheel for neuroconv-0.4.8 via setuptools.build_meta:__legacy__
python3.11 -m gpep517 build-wheel --prefix=/usr --backend setuptools.build_meta:__legacy__ --output-fd 3 --wheel-dir /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/wheel
2024-03-21 12:56:26,770 gpep517 INFO Building wheel via backend setuptools.build_meta:__legacy__
2024-03-21 12:56:26,989 root INFO running bdist_wheel
2024-03-21 12:56:27,087 root INFO running build
2024-03-21 12:56:27,087 root INFO running build_py
2024-03-21 12:56:27,106 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build
2024-03-21 12:56:27,106 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib
2024-03-21 12:56:27,106 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,106 root INFO copying src/neuroconv/nwbconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,107 root INFO copying src/neuroconv/basetemporalalignmentinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,107 root INFO copying src/neuroconv/basedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,107 root INFO copying src/neuroconv/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,108 root INFO copying src/neuroconv/baseextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv
2024-03-21 12:56:27,108 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces
2024-03-21 12:56:27,108 root INFO copying src/neuroconv/datainterfaces/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces
2024-03-21 12:56:27,109 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,109 root INFO copying src/neuroconv/utils/checks.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,109 root INFO copying src/neuroconv/utils/dict.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,109 root INFO copying src/neuroconv/utils/path.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,109 root INFO copying src/neuroconv/utils/json_schema.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,110 root INFO copying src/neuroconv/utils/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,110 root INFO copying src/neuroconv/utils/types.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils
2024-03-21 12:56:27,110 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,110 root INFO copying src/neuroconv/tools/importing.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,111 root INFO copying src/neuroconv/tools/path_expansion.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,111 root INFO copying src/neuroconv/tools/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,111 root INFO copying src/neuroconv/tools/hdmf.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,111 root INFO copying src/neuroconv/tools/processes.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,112 root INFO copying src/neuroconv/tools/text.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,112 root INFO copying src/neuroconv/tools/figshare.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,112 root INFO copying src/neuroconv/tools/signal_processing.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools
2024-03-21 12:56:27,112 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/converters
2024-03-21 12:56:27,113 root INFO copying src/neuroconv/converters/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/converters
2024-03-21 12:56:27,113 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,113 root INFO copying src/neuroconv/datainterfaces/ophys/basesegmentationextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,113 root INFO copying src/neuroconv/datainterfaces/ophys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,113 root INFO copying src/neuroconv/datainterfaces/ophys/baseimagingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,114 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior
2024-03-21 12:56:27,114 root INFO copying src/neuroconv/datainterfaces/behavior/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior
2024-03-21 12:56:27,114 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,114 root INFO copying src/neuroconv/datainterfaces/icephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,115 root INFO copying src/neuroconv/datainterfaces/icephys/baseicephysinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,115 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text
2024-03-21 12:56:27,115 root INFO copying src/neuroconv/datainterfaces/text/timeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text
2024-03-21 12:56:27,116 root INFO copying src/neuroconv/datainterfaces/text/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text
2024-03-21 12:56:27,116 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,116 root INFO copying src/neuroconv/datainterfaces/ecephys/basesortingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,116 root INFO copying src/neuroconv/datainterfaces/ecephys/baselfpextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,117 root INFO copying src/neuroconv/datainterfaces/ecephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,117 root INFO copying src/neuroconv/datainterfaces/ecephys/baserecordingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,117 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,117 root INFO copying src/neuroconv/datainterfaces/ophys/extract/extractdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,118 root INFO copying src/neuroconv/datainterfaces/ophys/extract/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,118 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,118 root INFO copying src/neuroconv/datainterfaces/ophys/cnmfe/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,118 root INFO copying src/neuroconv/datainterfaces/ophys/cnmfe/cnmfedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,119 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,119 root INFO copying src/neuroconv/datainterfaces/ophys/hdf5/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,119 root INFO copying src/neuroconv/datainterfaces/ophys/hdf5/hdf5datainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,119 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,120 root INFO copying src/neuroconv/datainterfaces/ophys/suite2p/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,120 root INFO copying src/neuroconv/datainterfaces/ophys/suite2p/suite2pdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,120 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,120 root INFO copying src/neuroconv/datainterfaces/ophys/sima/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,121 root INFO copying src/neuroconv/datainterfaces/ophys/sima/simadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,121 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,121 root INFO copying src/neuroconv/datainterfaces/ophys/caiman/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,121 root INFO copying src/neuroconv/datainterfaces/ophys/caiman/caimandatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,122 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,122 root INFO copying src/neuroconv/datainterfaces/ophys/sbx/sbxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,122 root INFO copying src/neuroconv/datainterfaces/ophys/sbx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,122 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,122 root INFO copying src/neuroconv/datainterfaces/ophys/scanimage/scanimageimaginginterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,123 root INFO copying src/neuroconv/datainterfaces/ophys/scanimage/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,123 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,123 root INFO copying src/neuroconv/datainterfaces/ophys/miniscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,123 root INFO copying src/neuroconv/datainterfaces/ophys/miniscope/miniscopeconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,124 root INFO copying src/neuroconv/datainterfaces/ophys/miniscope/miniscopeimagingdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,124 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,124 root INFO copying src/neuroconv/datainterfaces/ophys/micromanagertiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,124 root INFO copying src/neuroconv/datainterfaces/ophys/micromanagertiff/micromanagertiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,125 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,125 root INFO copying src/neuroconv/datainterfaces/ophys/brukertiff/brukertiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,125 root INFO copying src/neuroconv/datainterfaces/ophys/brukertiff/brukertiffconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,125 root INFO copying src/neuroconv/datainterfaces/ophys/brukertiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,126 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,126 root INFO copying src/neuroconv/datainterfaces/ophys/tiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,126 root INFO copying src/neuroconv/datainterfaces/ophys/tiff/tiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,126 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,126 root INFO copying src/neuroconv/datainterfaces/behavior/audio/audiointerface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,127 root INFO copying src/neuroconv/datainterfaces/behavior/audio/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,127 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,127 root INFO copying src/neuroconv/datainterfaces/behavior/sleap/sleapdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,127 root INFO copying src/neuroconv/datainterfaces/behavior/sleap/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,128 root INFO copying src/neuroconv/datainterfaces/behavior/sleap/sleap_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,128 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,128 root INFO copying src/neuroconv/datainterfaces/behavior/neuralynx/neuralynx_nvt_interface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,128 root INFO copying src/neuroconv/datainterfaces/behavior/neuralynx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,129 root INFO copying src/neuroconv/datainterfaces/behavior/neuralynx/nvt_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,129 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,129 root INFO copying src/neuroconv/datainterfaces/behavior/lightningpose/lightningposedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,129 root INFO copying src/neuroconv/datainterfaces/behavior/lightningpose/lightningposeconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,130 root INFO copying src/neuroconv/datainterfaces/behavior/lightningpose/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,130 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,130 root INFO copying src/neuroconv/datainterfaces/behavior/miniscope/miniscopedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,130 root INFO copying src/neuroconv/datainterfaces/behavior/miniscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,131 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,131 root INFO copying src/neuroconv/datainterfaces/behavior/deeplabcut/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,131 root INFO copying src/neuroconv/datainterfaces/behavior/deeplabcut/deeplabcutdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,131 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,131 root INFO copying src/neuroconv/datainterfaces/behavior/video/video_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,132 root INFO copying src/neuroconv/datainterfaces/behavior/video/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,132 root INFO copying src/neuroconv/datainterfaces/behavior/video/videodatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,132 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,132 root INFO copying src/neuroconv/datainterfaces/behavior/fictrac/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,132 root INFO copying src/neuroconv/datainterfaces/behavior/fictrac/fictracdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,133 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,133 root INFO copying src/neuroconv/datainterfaces/icephys/abf/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,133 root INFO copying src/neuroconv/datainterfaces/icephys/abf/abfdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,133 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,134 root INFO copying src/neuroconv/datainterfaces/text/excel/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,134 root INFO copying src/neuroconv/datainterfaces/text/excel/exceltimeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,134 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,134 root INFO copying src/neuroconv/datainterfaces/text/csv/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,134 root INFO copying src/neuroconv/datainterfaces/text/csv/csvtimeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,135 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,135 root INFO copying src/neuroconv/datainterfaces/ecephys/plexon/plexondatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,135 root INFO copying src/neuroconv/datainterfaces/ecephys/plexon/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,135 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,136 root INFO copying src/neuroconv/datainterfaces/ecephys/biocam/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,136 root INFO copying src/neuroconv/datainterfaces/ecephys/biocam/biocamdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,136 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,136 root INFO copying src/neuroconv/datainterfaces/ecephys/axona/axona_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,137 root INFO copying src/neuroconv/datainterfaces/ecephys/axona/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,137 root INFO copying src/neuroconv/datainterfaces/ecephys/axona/axonadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,137 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,137 root INFO copying src/neuroconv/datainterfaces/ecephys/neuroscope/neuroscopedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,138 root INFO copying src/neuroconv/datainterfaces/ecephys/neuroscope/neuroscope_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,138 root INFO copying src/neuroconv/datainterfaces/ecephys/neuroscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,138 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,138 root INFO copying src/neuroconv/datainterfaces/ecephys/openephys/openephysdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,139 root INFO copying src/neuroconv/datainterfaces/ecephys/openephys/openephyslegacydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,139 root INFO copying src/neuroconv/datainterfaces/ecephys/openephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,139 root INFO copying src/neuroconv/datainterfaces/ecephys/openephys/openephyssortingdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,139 root INFO copying src/neuroconv/datainterfaces/ecephys/openephys/openephysbinarydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,140 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,140 root INFO copying src/neuroconv/datainterfaces/ecephys/spikegadgets/spikegadgetsdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,140 root INFO copying src/neuroconv/datainterfaces/ecephys/spikegadgets/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,140 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,141 root INFO copying src/neuroconv/datainterfaces/ecephys/spikeglx/spikeglx_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,141 root INFO copying src/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,141 root INFO copying src/neuroconv/datainterfaces/ecephys/spikeglx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,141 root INFO copying src/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,142 root INFO copying src/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxnidqinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,142 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,142 root INFO copying src/neuroconv/datainterfaces/ecephys/neuralynx/neuralynxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,142 root INFO copying src/neuroconv/datainterfaces/ecephys/neuralynx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,143 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,143 root INFO copying src/neuroconv/datainterfaces/ecephys/mearec/mearecdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,143 root INFO copying src/neuroconv/datainterfaces/ecephys/mearec/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,143 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,143 root INFO copying src/neuroconv/datainterfaces/ecephys/cellexplorer/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,143 root INFO copying src/neuroconv/datainterfaces/ecephys/cellexplorer/cellexplorerdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,144 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,144 root INFO copying src/neuroconv/datainterfaces/ecephys/kilosort/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,144 root INFO copying src/neuroconv/datainterfaces/ecephys/kilosort/kilosortdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,144 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,145 root INFO copying src/neuroconv/datainterfaces/ecephys/tdt/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,145 root INFO copying src/neuroconv/datainterfaces/ecephys/tdt/tdtdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,145 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,145 root INFO copying src/neuroconv/datainterfaces/ecephys/spike2/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,145 root INFO copying src/neuroconv/datainterfaces/ecephys/spike2/spike2datainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,146 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,146 root INFO copying src/neuroconv/datainterfaces/ecephys/intan/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,146 root INFO copying src/neuroconv/datainterfaces/ecephys/intan/intandatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,146 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,147 root INFO copying src/neuroconv/datainterfaces/ecephys/maxwell/maxonedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,147 root INFO copying src/neuroconv/datainterfaces/ecephys/maxwell/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,147 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,147 root INFO copying src/neuroconv/datainterfaces/ecephys/alphaomega/alphaomegadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,147 root INFO copying src/neuroconv/datainterfaces/ecephys/alphaomega/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,148 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,148 root INFO copying src/neuroconv/datainterfaces/ecephys/edf/edfdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,148 root INFO copying src/neuroconv/datainterfaces/ecephys/edf/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,148 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,149 root INFO copying src/neuroconv/datainterfaces/ecephys/phy/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,149 root INFO copying src/neuroconv/datainterfaces/ecephys/phy/phydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,149 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,149 root INFO copying src/neuroconv/datainterfaces/ecephys/blackrock/blackrockdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,150 root INFO copying src/neuroconv/datainterfaces/ecephys/blackrock/header_tools.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,150 root INFO copying src/neuroconv/datainterfaces/ecephys/blackrock/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,150 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,150 root INFO copying src/neuroconv/datainterfaces/ecephys/mcsraw/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,150 root INFO copying src/neuroconv/datainterfaces/ecephys/mcsraw/mcsrawdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,151 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/audio
2024-03-21 12:56:27,151 root INFO copying src/neuroconv/tools/audio/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/audio
2024-03-21 12:56:27,151 root INFO copying src/neuroconv/tools/audio/audio.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/audio
2024-03-21 12:56:27,151 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,152 root INFO copying src/neuroconv/tools/yaml_conversion_specification/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,152 root INFO copying src/neuroconv/tools/yaml_conversion_specification/_yaml_conversion_specification.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,152 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,152 root INFO copying src/neuroconv/tools/data_transfers/_aws.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,152 root INFO copying src/neuroconv/tools/data_transfers/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,153 root INFO copying src/neuroconv/tools/data_transfers/_helpers.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,153 root INFO copying src/neuroconv/tools/data_transfers/_globus.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,153 root INFO copying src/neuroconv/tools/data_transfers/_dandi.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers
2024-03-21 12:56:27,154 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/neo
2024-03-21 12:56:27,154 root INFO copying src/neuroconv/tools/neo/neo.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/neo
2024-03-21 12:56:27,154 root INFO copying src/neuroconv/tools/neo/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/neo
2024-03-21 12:56:27,154 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,154 root INFO copying src/neuroconv/tools/testing/mock_probes.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,155 root INFO copying src/neuroconv/tools/testing/mock_files.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,155 root INFO copying src/neuroconv/tools/testing/mock_ttl_signals.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,155 root INFO copying src/neuroconv/tools/testing/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,155 root INFO copying src/neuroconv/tools/testing/mock_interfaces.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,156 root INFO copying src/neuroconv/tools/testing/data_interface_mixins.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,156 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,156 root INFO copying src/neuroconv/tools/spikeinterface/spikeinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,156 root INFO copying src/neuroconv/tools/spikeinterface/spikeinterfacerecordingdatachunkiterator.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,157 root INFO copying src/neuroconv/tools/spikeinterface/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,157 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors
2024-03-21 12:56:27,157 root INFO copying src/neuroconv/tools/roiextractors/imagingextractordatachunkiterator.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors
2024-03-21 12:56:27,157 root INFO copying src/neuroconv/tools/roiextractors/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors
2024-03-21 12:56:27,157 root INFO copying src/neuroconv/tools/roiextractors/roiextractors.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors
2024-03-21 12:56:27,158 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,158 root INFO copying src/neuroconv/tools/nwb_helpers/_metadata_and_file_helpers.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,158 root INFO copying src/neuroconv/tools/nwb_helpers/_backend_configuration.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,159 root INFO copying src/neuroconv/tools/nwb_helpers/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,159 root INFO copying src/neuroconv/tools/nwb_helpers/_dataset_configuration.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,159 root INFO copying src/neuroconv/tools/nwb_helpers/_configure_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,159 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,159 root INFO copying src/neuroconv/tools/testing/_mock/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,160 root INFO copying src/neuroconv/tools/testing/_mock/_mock_dataset_models.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,160 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,160 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_base_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,160 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_zarr_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,161 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_zarr_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,161 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,161 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,161 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_base_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,161 root INFO copying src/neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,162 root INFO running egg_info
2024-03-21 12:56:27,162 root INFO creating src/neuroconv.egg-info
2024-03-21 12:56:27,182 root INFO writing src/neuroconv.egg-info/PKG-INFO
2024-03-21 12:56:27,202 root INFO writing dependency_links to src/neuroconv.egg-info/dependency_links.txt
2024-03-21 12:56:27,202 root INFO writing entry points to src/neuroconv.egg-info/entry_points.txt
2024-03-21 12:56:27,213 root INFO writing requirements to src/neuroconv.egg-info/requires.txt
2024-03-21 12:56:27,214 root INFO writing top-level names to src/neuroconv.egg-info/top_level.txt
2024-03-21 12:56:27,292 root INFO writing manifest file 'src/neuroconv.egg-info/SOURCES.txt'
[03/21/24 12:56:27] ERROR    listing git files failed - pretending there aren't any                                                git.py:24
2024-03-21 12:56:27,386 root INFO reading manifest file 'src/neuroconv.egg-info/SOURCES.txt'
2024-03-21 12:56:27,386 root INFO reading manifest template 'MANIFEST.in'
2024-03-21 12:56:27,387 root INFO adding license file 'license.txt'
2024-03-21 12:56:27,389 root INFO writing manifest file 'src/neuroconv.egg-info/SOURCES.txt'
/usr/lib/python3.11/site-packages/setuptools/command/build_py.py:207: _Warning: Package 'neuroconv.schemas' is absent from the `packages` configuration.
!!

        ********************************************************************************
        ############################
        # Package would be ignored #
        ############################
        Python recognizes 'neuroconv.schemas' as an importable package[^1],
        but it is absent from setuptools' `packages` configuration.

        This leads to an ambiguous overall configuration. If you want to distribute this
        package, please make sure that 'neuroconv.schemas' is explicitly added
        to the `packages` configuration field.

        Alternatively, you can also rely on setuptools' discovery methods
        (for example by using `find_namespace_packages(...)`/`find_namespace:`
        instead of `find_packages(...)`/`find:`).

        You can read more about "package discovery" on setuptools documentation page:

        - https://setuptools.pypa.io/en/latest/userguide/package_discovery.html

        If you don't want 'neuroconv.schemas' to be distributed and are
        already explicitly excluding 'neuroconv.schemas' via
        `find_namespace_packages(...)/find_namespace` or `find_packages(...)/find`,
        you can try to use `exclude_package_data`, or `include-package-data=False` in
        combination with a more fine grained `package-data` configuration.

        You can read more about "package data files" on setuptools documentation page:

        - https://setuptools.pypa.io/en/latest/userguide/datafiles.html


        [^1]: For Python, any directory (with suitable naming) can be imported,
              even if it does not contain any `.py` files.
              On the other hand, currently there is no concept of package data
              directory, all directories are treated like packages.
        ********************************************************************************

!!
  check.warn(importable)
2024-03-21 12:56:27,396 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,396 root INFO copying src/neuroconv/schemas/base_metadata_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,396 root INFO copying src/neuroconv/schemas/metadata_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,397 root INFO copying src/neuroconv/schemas/source_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,397 root INFO copying src/neuroconv/schemas/time_series_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,397 root INFO copying src/neuroconv/schemas/timeintervals_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,398 root INFO copying src/neuroconv/schemas/yaml_conversion_specification_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas
2024-03-21 12:56:27,398 root INFO copying src/neuroconv/tools/testing/_path_expander_demo_ibl_filepaths.txt -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing
2024-03-21 12:56:27,404 root WARNING warning: build_py: byte-compiling is disabled, skipping.

2024-03-21 12:56:27,448 wheel INFO installing to /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel
2024-03-21 12:56:27,448 root INFO running install
2024-03-21 12:56:27,456 root INFO running install_lib
2024-03-21 12:56:27,477 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64
2024-03-21 12:56:27,477 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel
2024-03-21 12:56:27,477 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,477 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,477 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/time_series_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,478 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/source_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,478 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/base_metadata_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,478 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/metadata_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,478 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/yaml_conversion_specification_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,479 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/schemas/timeintervals_schema.json -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/schemas
2024-03-21 12:56:27,479 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/nwbconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,479 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces
2024-03-21 12:56:27,479 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,480 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,480 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/extract/extractdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,480 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/extract/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/extract
2024-03-21 12:56:27,480 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/basesegmentationextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,480 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,481 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/cnmfe/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,481 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/cnmfe/cnmfedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/cnmfe
2024-03-21 12:56:27,481 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,481 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/hdf5/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,482 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/hdf5/hdf5datainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/hdf5
2024-03-21 12:56:27,482 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,482 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,482 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/suite2p/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,482 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/suite2p/suite2pdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/suite2p
2024-03-21 12:56:27,483 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,483 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sima/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,483 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sima/simadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sima
2024-03-21 12:56:27,483 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,483 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/caiman/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,484 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/caiman/caimandatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/caiman
2024-03-21 12:56:27,484 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,484 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sbx/sbxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,484 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/sbx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/sbx
2024-03-21 12:56:27,485 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,485 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/scanimage/scanimageimaginginterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,485 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/scanimage/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/scanimage
2024-03-21 12:56:27,485 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/baseimagingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys
2024-03-21 12:56:27,486 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,486 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,486 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope/miniscopeconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,486 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/miniscope/miniscopeimagingdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/miniscope
2024-03-21 12:56:27,486 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,487 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/micromanagertiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,487 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/micromanagertiff/micromanagertiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/micromanagertiff
2024-03-21 12:56:27,487 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,487 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff/brukertiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,488 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff/brukertiffconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,488 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/brukertiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/brukertiff
2024-03-21 12:56:27,488 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,488 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/tiff/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,488 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ophys/tiff/tiffdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ophys/tiff
2024-03-21 12:56:27,489 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior
2024-03-21 12:56:27,489 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,489 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/audio/audiointerface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,489 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/audio/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/audio
2024-03-21 12:56:27,490 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,490 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap/sleapdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,490 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,490 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/sleap/sleap_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/sleap
2024-03-21 12:56:27,490 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior
2024-03-21 12:56:27,491 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,491 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx/neuralynx_nvt_interface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,491 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,491 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/neuralynx/nvt_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/neuralynx
2024-03-21 12:56:27,492 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,492 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose/lightningposedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,492 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose/lightningposeconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,492 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/lightningpose/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/lightningpose
2024-03-21 12:56:27,492 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,493 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/miniscope/miniscopedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,493 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/miniscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/miniscope
2024-03-21 12:56:27,493 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,493 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/deeplabcut/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,494 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/deeplabcut/deeplabcutdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/deeplabcut
2024-03-21 12:56:27,494 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,494 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video/video_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,495 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,495 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/video/videodatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/video
2024-03-21 12:56:27,496 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,496 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/fictrac/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,496 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/behavior/fictrac/fictracdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/behavior/fictrac
2024-03-21 12:56:27,497 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces
2024-03-21 12:56:27,497 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,497 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,498 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/abf/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,498 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/abf/abfdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys/abf
2024-03-21 12:56:27,498 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,499 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/icephys/baseicephysinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/icephys
2024-03-21 12:56:27,499 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text
2024-03-21 12:56:27,499 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,499 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/excel/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,500 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/excel/exceltimeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/excel
2024-03-21 12:56:27,500 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/timeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text
2024-03-21 12:56:27,500 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text
2024-03-21 12:56:27,501 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,501 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/csv/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,501 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/text/csv/csvtimeintervalsinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/text/csv
2024-03-21 12:56:27,502 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,502 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,502 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/plexon/plexondatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,503 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/plexon/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/plexon
2024-03-21 12:56:27,503 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/basesortingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,504 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,504 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/biocam/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,504 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/biocam/biocamdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/biocam
2024-03-21 12:56:27,505 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,505 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona/axona_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,505 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,505 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/axona/axonadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/axona
2024-03-21 12:56:27,506 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,506 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope/neuroscopedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,506 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope/neuroscope_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,506 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuroscope/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuroscope
2024-03-21 12:56:27,507 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/baselfpextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,507 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,507 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys/openephysdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,507 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys/openephyslegacydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,508 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,508 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys/openephyssortingdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,508 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/openephys/openephysbinarydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/openephys
2024-03-21 12:56:27,508 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,509 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikegadgets/spikegadgetsdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,509 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikegadgets/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikegadgets
2024-03-21 12:56:27,509 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,509 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,510 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx/spikeglx_utils.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,510 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxconverter.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,510 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,510 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,511 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spikeglx/spikeglxnidqinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spikeglx
2024-03-21 12:56:27,511 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,511 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuralynx/neuralynxdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,511 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/neuralynx/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/neuralynx
2024-03-21 12:56:27,512 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,512 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mearec/mearecdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,512 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mearec/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mearec
2024-03-21 12:56:27,513 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,513 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/cellexplorer/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,513 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/cellexplorer/cellexplorerdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/cellexplorer
2024-03-21 12:56:27,514 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,514 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/kilosort/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,514 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/kilosort/kilosortdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/kilosort
2024-03-21 12:56:27,515 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,515 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/tdt/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,515 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/tdt/tdtdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/tdt
2024-03-21 12:56:27,516 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,516 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spike2/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,516 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/spike2/spike2datainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/spike2
2024-03-21 12:56:27,517 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,517 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/intan/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,517 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/intan/intandatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/intan
2024-03-21 12:56:27,518 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,518 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/maxwell/maxonedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,518 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/maxwell/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/maxwell
2024-03-21 12:56:27,519 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/baserecordingextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys
2024-03-21 12:56:27,519 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,519 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/alphaomega/alphaomegadatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,520 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/alphaomega/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/alphaomega
2024-03-21 12:56:27,520 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,520 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/edf/edfdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,520 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/edf/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/edf
2024-03-21 12:56:27,521 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,521 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/phy/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,521 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/phy/phydatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/phy
2024-03-21 12:56:27,522 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,522 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock/blackrockdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,522 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock/header_tools.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,523 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/blackrock/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/blackrock
2024-03-21 12:56:27,523 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,523 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mcsraw/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,523 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/datainterfaces/ecephys/mcsraw/mcsrawdatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/datainterfaces/ecephys/mcsraw
2024-03-21 12:56:27,524 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,524 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/checks.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,524 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/dict.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,524 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/path.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,525 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/json_schema.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,525 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,525 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/utils/types.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/utils
2024-03-21 12:56:27,525 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/basetemporalalignmentinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,526 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/basedatainterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,526 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,526 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,526 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/audio
2024-03-21 12:56:27,526 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/audio/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/audio
2024-03-21 12:56:27,527 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/audio/audio.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/audio
2024-03-21 12:56:27,527 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/importing.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,527 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/path_expansion.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,527 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,528 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,528 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/yaml_conversion_specification/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,528 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/yaml_conversion_specification/_yaml_conversion_specification.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/yaml_conversion_specification
2024-03-21 12:56:27,528 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/hdmf.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,529 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/processes.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,529 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,529 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers/_aws.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,529 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,529 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers/_helpers.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,530 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers/_globus.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,530 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/data_transfers/_dandi.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/data_transfers
2024-03-21 12:56:27,530 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/text.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,530 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/neo
2024-03-21 12:56:27,531 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/neo/neo.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/neo
2024-03-21 12:56:27,531 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/neo/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/neo
2024-03-21 12:56:27,531 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,531 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/mock_probes.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,532 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,532 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_mock/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,532 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_mock/_mock_dataset_models.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing/_mock
2024-03-21 12:56:27,532 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/mock_files.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,532 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/mock_ttl_signals.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,533 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,533 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/mock_interfaces.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,533 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/data_interface_mixins.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,533 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/testing/_path_expander_demo_ibl_filepaths.txt -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/testing
2024-03-21 12:56:27,534 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,534 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface/spikeinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,534 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface/spikeinterfacerecordingdatachunkiterator.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,535 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/spikeinterface/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/spikeinterface
2024-03-21 12:56:27,535 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/figshare.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,535 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/roiextractors
2024-03-21 12:56:27,535 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors/imagingextractordatachunkiterator.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/roiextractors
2024-03-21 12:56:27,535 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/roiextractors
2024-03-21 12:56:27,536 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/roiextractors/roiextractors.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/roiextractors
2024-03-21 12:56:27,536 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,536 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_metadata_and_file_helpers.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,536 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_backend_configuration.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,537 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,537 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_dataset_configuration.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,537 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,537 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_base_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,538 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_zarr_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,538 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_zarr_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,538 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,538 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,539 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_base_dataset_io.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,539 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers/_configuration_models
2024-03-21 12:56:27,539 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/nwb_helpers/_configure_backend.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools/nwb_helpers
2024-03-21 12:56:27,539 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/tools/signal_processing.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/tools
2024-03-21 12:56:27,540 root INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/converters
2024-03-21 12:56:27,540 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/converters/__init__.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv/converters
2024-03-21 12:56:27,540 root INFO copying /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/lib/neuroconv/baseextractorinterface.py -> /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv
2024-03-21 12:56:27,540 root WARNING warning: install_lib: byte-compiling is disabled, skipping.

2024-03-21 12:56:27,540 root INFO running install_egg_info
2024-03-21 12:56:27,561 root INFO Copying src/neuroconv.egg-info to /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv-0.4.8-py3.11.egg-info
2024-03-21 12:56:27,563 root INFO running install_scripts
2024-03-21 12:56:27,584 wheel INFO creating /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel/neuroconv-0.4.8.dist-info/WHEEL
2024-03-21 12:56:27,585 wheel INFO creating '/var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/wheel/.tmp-698xbq5v/neuroconv-0.4.8-py3-none-any.whl' and adding '/var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel' to it
2024-03-21 12:56:27,585 wheel INFO adding 'neuroconv/__init__.py'
2024-03-21 12:56:27,585 wheel INFO adding 'neuroconv/basedatainterface.py'
2024-03-21 12:56:27,585 wheel INFO adding 'neuroconv/baseextractorinterface.py'
2024-03-21 12:56:27,586 wheel INFO adding 'neuroconv/basetemporalalignmentinterface.py'
2024-03-21 12:56:27,586 wheel INFO adding 'neuroconv/nwbconverter.py'
2024-03-21 12:56:27,586 wheel INFO adding 'neuroconv/converters/__init__.py'
2024-03-21 12:56:27,586 wheel INFO adding 'neuroconv/datainterfaces/__init__.py'
2024-03-21 12:56:27,587 wheel INFO adding 'neuroconv/datainterfaces/behavior/__init__.py'
2024-03-21 12:56:27,587 wheel INFO adding 'neuroconv/datainterfaces/behavior/audio/__init__.py'
2024-03-21 12:56:27,587 wheel INFO adding 'neuroconv/datainterfaces/behavior/audio/audiointerface.py'
2024-03-21 12:56:27,587 wheel INFO adding 'neuroconv/datainterfaces/behavior/deeplabcut/__init__.py'
2024-03-21 12:56:27,587 wheel INFO adding 'neuroconv/datainterfaces/behavior/deeplabcut/deeplabcutdatainterface.py'
2024-03-21 12:56:27,588 wheel INFO adding 'neuroconv/datainterfaces/behavior/fictrac/__init__.py'
2024-03-21 12:56:27,588 wheel INFO adding 'neuroconv/datainterfaces/behavior/fictrac/fictracdatainterface.py'
2024-03-21 12:56:27,588 wheel INFO adding 'neuroconv/datainterfaces/behavior/lightningpose/__init__.py'
2024-03-21 12:56:27,588 wheel INFO adding 'neuroconv/datainterfaces/behavior/lightningpose/lightningposeconverter.py'
2024-03-21 12:56:27,588 wheel INFO adding 'neuroconv/datainterfaces/behavior/lightningpose/lightningposedatainterface.py'
2024-03-21 12:56:27,589 wheel INFO adding 'neuroconv/datainterfaces/behavior/miniscope/__init__.py'
2024-03-21 12:56:27,589 wheel INFO adding 'neuroconv/datainterfaces/behavior/miniscope/miniscopedatainterface.py'
2024-03-21 12:56:27,589 wheel INFO adding 'neuroconv/datainterfaces/behavior/neuralynx/__init__.py'
2024-03-21 12:56:27,589 wheel INFO adding 'neuroconv/datainterfaces/behavior/neuralynx/neuralynx_nvt_interface.py'
2024-03-21 12:56:27,589 wheel INFO adding 'neuroconv/datainterfaces/behavior/neuralynx/nvt_utils.py'
2024-03-21 12:56:27,590 wheel INFO adding 'neuroconv/datainterfaces/behavior/sleap/__init__.py'
2024-03-21 12:56:27,590 wheel INFO adding 'neuroconv/datainterfaces/behavior/sleap/sleap_utils.py'
2024-03-21 12:56:27,590 wheel INFO adding 'neuroconv/datainterfaces/behavior/sleap/sleapdatainterface.py'
2024-03-21 12:56:27,590 wheel INFO adding 'neuroconv/datainterfaces/behavior/video/__init__.py'
2024-03-21 12:56:27,590 wheel INFO adding 'neuroconv/datainterfaces/behavior/video/video_utils.py'
2024-03-21 12:56:27,591 wheel INFO adding 'neuroconv/datainterfaces/behavior/video/videodatainterface.py'
2024-03-21 12:56:27,591 wheel INFO adding 'neuroconv/datainterfaces/ecephys/__init__.py'
2024-03-21 12:56:27,591 wheel INFO adding 'neuroconv/datainterfaces/ecephys/baselfpextractorinterface.py'
2024-03-21 12:56:27,591 wheel INFO adding 'neuroconv/datainterfaces/ecephys/baserecordingextractorinterface.py'
2024-03-21 12:56:27,591 wheel INFO adding 'neuroconv/datainterfaces/ecephys/basesortingextractorinterface.py'
2024-03-21 12:56:27,592 wheel INFO adding 'neuroconv/datainterfaces/ecephys/alphaomega/__init__.py'
2024-03-21 12:56:27,592 wheel INFO adding 'neuroconv/datainterfaces/ecephys/alphaomega/alphaomegadatainterface.py'
2024-03-21 12:56:27,592 wheel INFO adding 'neuroconv/datainterfaces/ecephys/axona/__init__.py'
2024-03-21 12:56:27,592 wheel INFO adding 'neuroconv/datainterfaces/ecephys/axona/axona_utils.py'
2024-03-21 12:56:27,592 wheel INFO adding 'neuroconv/datainterfaces/ecephys/axona/axonadatainterface.py'
2024-03-21 12:56:27,593 wheel INFO adding 'neuroconv/datainterfaces/ecephys/biocam/__init__.py'
2024-03-21 12:56:27,593 wheel INFO adding 'neuroconv/datainterfaces/ecephys/biocam/biocamdatainterface.py'
2024-03-21 12:56:27,593 wheel INFO adding 'neuroconv/datainterfaces/ecephys/blackrock/__init__.py'
2024-03-21 12:56:27,593 wheel INFO adding 'neuroconv/datainterfaces/ecephys/blackrock/blackrockdatainterface.py'
2024-03-21 12:56:27,593 wheel INFO adding 'neuroconv/datainterfaces/ecephys/blackrock/header_tools.py'
2024-03-21 12:56:27,594 wheel INFO adding 'neuroconv/datainterfaces/ecephys/cellexplorer/__init__.py'
2024-03-21 12:56:27,594 wheel INFO adding 'neuroconv/datainterfaces/ecephys/cellexplorer/cellexplorerdatainterface.py'
2024-03-21 12:56:27,594 wheel INFO adding 'neuroconv/datainterfaces/ecephys/edf/__init__.py'
2024-03-21 12:56:27,594 wheel INFO adding 'neuroconv/datainterfaces/ecephys/edf/edfdatainterface.py'
2024-03-21 12:56:27,594 wheel INFO adding 'neuroconv/datainterfaces/ecephys/intan/__init__.py'
2024-03-21 12:56:27,595 wheel INFO adding 'neuroconv/datainterfaces/ecephys/intan/intandatainterface.py'
2024-03-21 12:56:27,595 wheel INFO adding 'neuroconv/datainterfaces/ecephys/kilosort/__init__.py'
2024-03-21 12:56:27,595 wheel INFO adding 'neuroconv/datainterfaces/ecephys/kilosort/kilosortdatainterface.py'
2024-03-21 12:56:27,595 wheel INFO adding 'neuroconv/datainterfaces/ecephys/maxwell/__init__.py'
2024-03-21 12:56:27,595 wheel INFO adding 'neuroconv/datainterfaces/ecephys/maxwell/maxonedatainterface.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/mcsraw/__init__.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/mcsraw/mcsrawdatainterface.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/mearec/__init__.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/mearec/mearecdatainterface.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/neuralynx/__init__.py'
2024-03-21 12:56:27,596 wheel INFO adding 'neuroconv/datainterfaces/ecephys/neuralynx/neuralynxdatainterface.py'
2024-03-21 12:56:27,597 wheel INFO adding 'neuroconv/datainterfaces/ecephys/neuroscope/__init__.py'
2024-03-21 12:56:27,597 wheel INFO adding 'neuroconv/datainterfaces/ecephys/neuroscope/neuroscope_utils.py'
2024-03-21 12:56:27,597 wheel INFO adding 'neuroconv/datainterfaces/ecephys/neuroscope/neuroscopedatainterface.py'
2024-03-21 12:56:27,597 wheel INFO adding 'neuroconv/datainterfaces/ecephys/openephys/__init__.py'
2024-03-21 12:56:27,597 wheel INFO adding 'neuroconv/datainterfaces/ecephys/openephys/openephysbinarydatainterface.py'
2024-03-21 12:56:27,598 wheel INFO adding 'neuroconv/datainterfaces/ecephys/openephys/openephysdatainterface.py'
2024-03-21 12:56:27,598 wheel INFO adding 'neuroconv/datainterfaces/ecephys/openephys/openephyslegacydatainterface.py'
2024-03-21 12:56:27,598 wheel INFO adding 'neuroconv/datainterfaces/ecephys/openephys/openephyssortingdatainterface.py'
2024-03-21 12:56:27,598 wheel INFO adding 'neuroconv/datainterfaces/ecephys/phy/__init__.py'
2024-03-21 12:56:27,598 wheel INFO adding 'neuroconv/datainterfaces/ecephys/phy/phydatainterface.py'
2024-03-21 12:56:27,599 wheel INFO adding 'neuroconv/datainterfaces/ecephys/plexon/__init__.py'
2024-03-21 12:56:27,599 wheel INFO adding 'neuroconv/datainterfaces/ecephys/plexon/plexondatainterface.py'
2024-03-21 12:56:27,599 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spike2/__init__.py'
2024-03-21 12:56:27,599 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spike2/spike2datainterface.py'
2024-03-21 12:56:27,599 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikegadgets/__init__.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikegadgets/spikegadgetsdatainterface.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikeglx/__init__.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikeglx/spikeglx_utils.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikeglx/spikeglxconverter.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikeglx/spikeglxdatainterface.py'
2024-03-21 12:56:27,600 wheel INFO adding 'neuroconv/datainterfaces/ecephys/spikeglx/spikeglxnidqinterface.py'
2024-03-21 12:56:27,601 wheel INFO adding 'neuroconv/datainterfaces/ecephys/tdt/__init__.py'
2024-03-21 12:56:27,601 wheel INFO adding 'neuroconv/datainterfaces/ecephys/tdt/tdtdatainterface.py'
2024-03-21 12:56:27,601 wheel INFO adding 'neuroconv/datainterfaces/icephys/__init__.py'
2024-03-21 12:56:27,601 wheel INFO adding 'neuroconv/datainterfaces/icephys/baseicephysinterface.py'
2024-03-21 12:56:27,601 wheel INFO adding 'neuroconv/datainterfaces/icephys/abf/__init__.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/icephys/abf/abfdatainterface.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/ophys/__init__.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/ophys/baseimagingextractorinterface.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/ophys/basesegmentationextractorinterface.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/ophys/brukertiff/__init__.py'
2024-03-21 12:56:27,602 wheel INFO adding 'neuroconv/datainterfaces/ophys/brukertiff/brukertiffconverter.py'
2024-03-21 12:56:27,603 wheel INFO adding 'neuroconv/datainterfaces/ophys/brukertiff/brukertiffdatainterface.py'
2024-03-21 12:56:27,603 wheel INFO adding 'neuroconv/datainterfaces/ophys/caiman/__init__.py'
2024-03-21 12:56:27,603 wheel INFO adding 'neuroconv/datainterfaces/ophys/caiman/caimandatainterface.py'
2024-03-21 12:56:27,603 wheel INFO adding 'neuroconv/datainterfaces/ophys/cnmfe/__init__.py'
2024-03-21 12:56:27,603 wheel INFO adding 'neuroconv/datainterfaces/ophys/cnmfe/cnmfedatainterface.py'
2024-03-21 12:56:27,604 wheel INFO adding 'neuroconv/datainterfaces/ophys/extract/__init__.py'
2024-03-21 12:56:27,604 wheel INFO adding 'neuroconv/datainterfaces/ophys/extract/extractdatainterface.py'
2024-03-21 12:56:27,604 wheel INFO adding 'neuroconv/datainterfaces/ophys/hdf5/__init__.py'
2024-03-21 12:56:27,604 wheel INFO adding 'neuroconv/datainterfaces/ophys/hdf5/hdf5datainterface.py'
2024-03-21 12:56:27,604 wheel INFO adding 'neuroconv/datainterfaces/ophys/micromanagertiff/__init__.py'
2024-03-21 12:56:27,605 wheel INFO adding 'neuroconv/datainterfaces/ophys/micromanagertiff/micromanagertiffdatainterface.py'
2024-03-21 12:56:27,605 wheel INFO adding 'neuroconv/datainterfaces/ophys/miniscope/__init__.py'
2024-03-21 12:56:27,605 wheel INFO adding 'neuroconv/datainterfaces/ophys/miniscope/miniscopeconverter.py'
2024-03-21 12:56:27,605 wheel INFO adding 'neuroconv/datainterfaces/ophys/miniscope/miniscopeimagingdatainterface.py'
2024-03-21 12:56:27,605 wheel INFO adding 'neuroconv/datainterfaces/ophys/sbx/__init__.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/sbx/sbxdatainterface.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/scanimage/__init__.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/scanimage/scanimageimaginginterface.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/sima/__init__.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/sima/simadatainterface.py'
2024-03-21 12:56:27,606 wheel INFO adding 'neuroconv/datainterfaces/ophys/suite2p/__init__.py'
2024-03-21 12:56:27,607 wheel INFO adding 'neuroconv/datainterfaces/ophys/suite2p/suite2pdatainterface.py'
2024-03-21 12:56:27,607 wheel INFO adding 'neuroconv/datainterfaces/ophys/tiff/__init__.py'
2024-03-21 12:56:27,607 wheel INFO adding 'neuroconv/datainterfaces/ophys/tiff/tiffdatainterface.py'
2024-03-21 12:56:27,607 wheel INFO adding 'neuroconv/datainterfaces/text/__init__.py'
2024-03-21 12:56:27,607 wheel INFO adding 'neuroconv/datainterfaces/text/timeintervalsinterface.py'
2024-03-21 12:56:27,608 wheel INFO adding 'neuroconv/datainterfaces/text/csv/__init__.py'
2024-03-21 12:56:27,608 wheel INFO adding 'neuroconv/datainterfaces/text/csv/csvtimeintervalsinterface.py'
2024-03-21 12:56:27,608 wheel INFO adding 'neuroconv/datainterfaces/text/excel/__init__.py'
2024-03-21 12:56:27,608 wheel INFO adding 'neuroconv/datainterfaces/text/excel/exceltimeintervalsinterface.py'
2024-03-21 12:56:27,608 wheel INFO adding 'neuroconv/schemas/base_metadata_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/schemas/metadata_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/schemas/source_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/schemas/time_series_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/schemas/timeintervals_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/schemas/yaml_conversion_specification_schema.json'
2024-03-21 12:56:27,609 wheel INFO adding 'neuroconv/tools/__init__.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/figshare.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/hdmf.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/importing.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/path_expansion.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/processes.py'
2024-03-21 12:56:27,610 wheel INFO adding 'neuroconv/tools/signal_processing.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/text.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/audio/__init__.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/audio/audio.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/data_transfers/__init__.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/data_transfers/_aws.py'
2024-03-21 12:56:27,611 wheel INFO adding 'neuroconv/tools/data_transfers/_dandi.py'
2024-03-21 12:56:27,612 wheel INFO adding 'neuroconv/tools/data_transfers/_globus.py'
2024-03-21 12:56:27,612 wheel INFO adding 'neuroconv/tools/data_transfers/_helpers.py'
2024-03-21 12:56:27,612 wheel INFO adding 'neuroconv/tools/neo/__init__.py'
2024-03-21 12:56:27,612 wheel INFO adding 'neuroconv/tools/neo/neo.py'
2024-03-21 12:56:27,612 wheel INFO adding 'neuroconv/tools/nwb_helpers/__init__.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_backend_configuration.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configure_backend.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_dataset_configuration.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_metadata_and_file_helpers.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/__init__.py'
2024-03-21 12:56:27,613 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_base_backend.py'
2024-03-21 12:56:27,614 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_base_dataset_io.py'
2024-03-21 12:56:27,614 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_backend.py'
2024-03-21 12:56:27,614 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_hdf5_dataset_io.py'
2024-03-21 12:56:27,614 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_zarr_backend.py'
2024-03-21 12:56:27,614 wheel INFO adding 'neuroconv/tools/nwb_helpers/_configuration_models/_zarr_dataset_io.py'
2024-03-21 12:56:27,615 wheel INFO adding 'neuroconv/tools/roiextractors/__init__.py'
2024-03-21 12:56:27,615 wheel INFO adding 'neuroconv/tools/roiextractors/imagingextractordatachunkiterator.py'
2024-03-21 12:56:27,615 wheel INFO adding 'neuroconv/tools/roiextractors/roiextractors.py'
2024-03-21 12:56:27,615 wheel INFO adding 'neuroconv/tools/spikeinterface/__init__.py'
2024-03-21 12:56:27,615 wheel INFO adding 'neuroconv/tools/spikeinterface/spikeinterface.py'
2024-03-21 12:56:27,616 wheel INFO adding 'neuroconv/tools/spikeinterface/spikeinterfacerecordingdatachunkiterator.py'
2024-03-21 12:56:27,616 wheel INFO adding 'neuroconv/tools/testing/__init__.py'
2024-03-21 12:56:27,616 wheel INFO adding 'neuroconv/tools/testing/_path_expander_demo_ibl_filepaths.txt'
2024-03-21 12:56:27,616 wheel INFO adding 'neuroconv/tools/testing/data_interface_mixins.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/mock_files.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/mock_interfaces.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/mock_probes.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/mock_ttl_signals.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/_mock/__init__.py'
2024-03-21 12:56:27,617 wheel INFO adding 'neuroconv/tools/testing/_mock/_mock_dataset_models.py'
2024-03-21 12:56:27,618 wheel INFO adding 'neuroconv/tools/yaml_conversion_specification/__init__.py'
2024-03-21 12:56:27,618 wheel INFO adding 'neuroconv/tools/yaml_conversion_specification/_yaml_conversion_specification.py'
2024-03-21 12:56:27,618 wheel INFO adding 'neuroconv/utils/__init__.py'
2024-03-21 12:56:27,618 wheel INFO adding 'neuroconv/utils/checks.py'
2024-03-21 12:56:27,618 wheel INFO adding 'neuroconv/utils/dict.py'
2024-03-21 12:56:27,619 wheel INFO adding 'neuroconv/utils/json_schema.py'
2024-03-21 12:56:27,619 wheel INFO adding 'neuroconv/utils/path.py'
2024-03-21 12:56:27,619 wheel INFO adding 'neuroconv/utils/types.py'
2024-03-21 12:56:27,619 wheel INFO adding 'neuroconv-0.4.8.dist-info/METADATA'
2024-03-21 12:56:27,619 wheel INFO adding 'neuroconv-0.4.8.dist-info/WHEEL'
2024-03-21 12:56:27,620 wheel INFO adding 'neuroconv-0.4.8.dist-info/entry_points.txt'
2024-03-21 12:56:27,620 wheel INFO adding 'neuroconv-0.4.8.dist-info/license.txt'
2024-03-21 12:56:27,620 wheel INFO adding 'neuroconv-0.4.8.dist-info/top_level.txt'
2024-03-21 12:56:27,621 wheel INFO adding 'neuroconv-0.4.8.dist-info/RECORD'
2024-03-21 12:56:27,621 wheel INFO removing /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/build/bdist.linux-x86_64/wheel
2024-03-21 12:56:27,632 gpep517 INFO The backend produced /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/wheel/neuroconv-0.4.8-py3-none-any.whl
 *   Installing neuroconv-0.4.8-py3-none-any.whl to /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install
python3.11 -m gpep517 install-wheel --destdir=/var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install --interpreter=/usr/bin/python3.11 --prefix=/usr --optimize=all /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/wheel/neuroconv-0.4.8-py3-none-any.whl
2024-03-21 12:56:27,754 gpep517 INFO Installing /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/wheel/neuroconv-0.4.8-py3-none-any.whl into /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install
2024-03-21 12:56:28,182 gpep517 INFO Installation complete
>>> Source compiled.
>>> Test phase: sci-biology/neuroconv-0.4.8
 * python3_11: running distutils-r1_run_phase python_test
python3.11 -m pytest -vv -ra -l -Wdefault --color=yes -o console_output_style=count -o tmp_path_retention_count=0 -o tmp_path_retention_policy=failed -p no:cov -p no:flake8 -p no:flakes -p no:pylint -p no:markdown -p no:sugar -p no:xvfb -p no:pytest-describe -p no:plus -p no:tavern -p no:salt-factories tests/test_minimal tests/test_ecephys
=========================================================== test session starts ============================================================
platform linux -- Python 3.11.8, pytest-7.4.4, pluggy-1.4.0 -- /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install/usr/bin/python3.11
cachedir: .pytest_cache
rootdir: /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8
configfile: pyproject.toml
plugins: mock-3.12.0, pyfakefs-5.3.5, rerunfailures-14.0, anyio-4.2.0, pkgcore-0.12.24
collecting ... collected 270 items

tests/test_minimal/test_converter.py::test_converter PASSED                                                                       [  1/270]
tests/test_minimal/test_converter.py::TestNWBConverterAndPipeInitialization::test_child_class_source_data_init PASSED             [  2/270]
tests/test_minimal/test_converter.py::TestNWBConverterAndPipeInitialization::test_consistent_init_pipe_vs_nwb PASSED              [  3/270]
tests/test_minimal/test_converter.py::TestNWBConverterAndPipeInitialization::test_pipe_list_dict PASSED                           [  4/270]
tests/test_minimal/test_converter.py::TestNWBConverterAndPipeInitialization::test_pipe_list_init PASSED                           [  5/270]
tests/test_minimal/test_converter.py::TestNWBConverterAndPipeInitialization::test_unique_names_with_list_argument PASSED          [  6/270]
tests/test_minimal/test_metadata_schema.py::test_metadata_schema PASSED                                                           [  7/270]
tests/test_minimal/test_metadata_schema.py::test_invalid_ophys_metadata PASSED                                                    [  8/270]
tests/test_minimal/test_metadata_schema.py::test_invalid_ophys_plane_metadata PASSED                                              [  9/270]
tests/test_minimal/test_metadata_schema.py::test_ophys_plane_fix PASSED                                                           [ 10/270]
tests/test_minimal/test_tools_hdmf.py::TestIteratorAssertions::test_buffer_bigger_than_chunk_assertion PASSED                     [ 11/270]
tests/test_minimal/test_tools_hdmf.py::test_early_exit PASSED                                                                     [ 12/270]
tests/test_minimal/test_tools_hdmf.py::test_buffer_padding_long_shape PASSED                                                      [ 13/270]
tests/test_minimal/test_tools_hdmf.py::test_buffer_padding_mixed_shape PASSED                                                     [ 14/270]
tests/test_minimal/test_tools_hdmf.py::test_min_axis_too_large PASSED                                                             [ 15/270]
tests/test_minimal/test_tools_hdmf.py::test_sliceable_data_chunk_iterator PASSED                                                  [ 16/270]
tests/test_minimal/test_tools_hdmf.py::test_sliceable_data_chunk_iterator_edge_case_1 PASSED                                      [ 17/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_baseline_mean_int_dtype_float_assertion PASSED [ 18/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_baseline_mean_int_dtype_int_assertion PASSED [ 19/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_channel_noise_int_dtype_float_assertion PASSED [ 20/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_channel_noise_int_dtype_int_assertion PASSED [ 21/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_default PASSED                              [ 22/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_irregular_short_pulses PASSED               [ 23/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_irregular_short_pulses_adjusted_noise PASSED [ 24/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_irregular_short_pulses_different_seed PASSED [ 25/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_non_default_regular PASSED                  [ 26/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_non_default_regular_adjusted_means PASSED   [ 27/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_non_default_regular_as_uint16 PASSED        [ 28/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_non_default_regular_floats PASSED           [ 29/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_non_default_regular_floats_adjusted_means_and_noise PASSED [ 30/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_overlapping_ttl_assertion PASSED            [ 31/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_signal_mean_int_dtype_float_assertion PASSED [ 32/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_signal_mean_int_dtype_int_assertion PASSED  [ 33/270]
tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_single_frame_overlapping_ttl_assertion PASSED [ 34/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_append PASSED               [ 35/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_assertion_conflicting_bases PASSED [ 36/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_assertion_nwbfile_path_and_nwbfile_object PASSED [ 37/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_closure PASSED              [ 38/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_no_file_save_on_error_in_context PASSED [ 39/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_no_print_on_error_in_context PASSED [ 40/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_overwrite PASSED            [ 41/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_pass_nwbfile PASSED         [ 42/270]
tests/test_minimal/test_tools/test_context_tools.py::TestMakeOrLoadNWBFile::test_make_or_load_nwbfile_write PASSED                [ 43/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_only_folder_match PASSED                                                 [ 44/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_only_file_match PASSED                                                   [ 45/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_expand_paths PASSED                                                      [ 46/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_expand_paths_with_extras PASSED                                          [ 47/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_expand_paths_ibl PASSED                                                  [ 48/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case0] PASSED                  [ 49/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case1] PASSED                  [ 50/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case2] PASSED                  [ 51/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case3] PASSED                  [ 52/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case4] PASSED                  [ 53/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_construct_path_template_with_varied_cases[case5] PASSED                  [ 54/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_empty_subject_id PASSED                                                  [ 55/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_empty_session_id PASSED                                                  [ 56/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_missing_subject_id_in_path PASSED                                        [ 57/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_missing_session_id_in_path PASSED                                        [ 58/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_empty_metadata_value PASSED                                              [ 59/270]
tests/test_minimal/test_tools/test_expand_paths.py::test_missing_metadata_value_in_path PASSED                                    [ 60/270]
tests/test_minimal/test_tools/test_importing.py::test_guide_attributes PASSED                                                     [ 61/270]
tests/test_minimal/test_tools/test_nwb_helpers.py::TestNWBHelpers::test_make_nwbfile_from_metadata_empty PASSED                   [ 62/270]
tests/test_minimal/test_tools/test_nwb_helpers.py::TestNWBHelpers::test_make_nwbfile_from_metadata_no_in_place_modification PASSED [ 63/270]
tests/test_minimal/test_tools/test_nwb_helpers.py::TestNWBHelpers::test_make_nwbfile_from_metadata_session_start_time PASSED      [ 64/270]
tests/test_minimal/test_tools/test_nwb_helpers.py::TestNWBHelpers::test_make_nwbfile_successful PASSED                            [ 65/270]
tests/test_minimal/test_tools/test_nwb_helpers.py::TestNWBHelpers::test_metadata_integrity PASSED                                 [ 66/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_current_defaults PASSED        [ 67/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_custom_threshold_floats PASSED [ 68/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_end_during_off_pulse_floats PASSED [ 69/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_end_during_off_pulse_int16 PASSED [ 70/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_end_during_on_pulse_floats PASSED [ 71/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_end_during_on_pulse_int16 PASSED [ 72/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_explicit_original_defaults PASSED [ 73/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_input_dimensions_assertion PASSED [ 74/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_start_during_on_pulse_floats PASSED [ 75/270]
tests/test_minimal/test_tools/test_signal_processing.py::TestGetRisingAndFallingTimesFromTTL::test_start_during_on_pulse_int16 PASSED [ 76/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_length_consistency[mock_HDF5DatasetIOConfiguration] PASSED [ 77/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_length_consistency[mock_ZarrDatasetIOConfiguration] PASSED [ 78/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_and_buffer_length_consistency[mock_HDF5DatasetIOConfiguration] PASSED [ 79/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_and_buffer_length_consistency[mock_ZarrDatasetIOConfiguration] PASSED [ 80/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_shape_nonpositive_elements[mock_HDF5DatasetIOConfiguration] PASSED [ 81/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_shape_nonpositive_elements[mock_ZarrDatasetIOConfiguration] PASSED [ 82/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_buffer_shape_nonpositive_elements[mock_HDF5DatasetIOConfiguration] PASSED [ 83/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_buffer_shape_nonpositive_elements[mock_ZarrDatasetIOConfiguration] PASSED [ 84/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_shape_exceeds_buffer_shape[mock_HDF5DatasetIOConfiguration] PASSED [ 85/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_shape_exceeds_buffer_shape[mock_ZarrDatasetIOConfiguration] PASSED [ 86/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_buffer_shape_exceeds_full_shape[mock_HDF5DatasetIOConfiguration] PASSED [ 87/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_buffer_shape_exceeds_full_shape[mock_ZarrDatasetIOConfiguration] PASSED [ 88/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_dimensions_do_not_evenly_divide_buffer[mock_HDF5DatasetIOConfiguration] PASSED [ 89/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_dimensions_do_not_evenly_divide_buffer[mock_ZarrDatasetIOConfiguration] PASSED [ 90/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_dimensions_do_not_evenly_divide_buffer_skip_full_shape[mock_HDF5DatasetIOConfiguration] PASSED [ 91/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_common_dataset_io_configuration_model.py::test_validator_chunk_dimensions_do_not_evenly_divide_buffer_skip_full_shape[mock_ZarrDatasetIOConfiguration] PASSED [ 92/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-unwrapped-<lambda>-iterator_options0] FAILED [ 93/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-generic-SliceableDataChunkIterator-iterator_options1] FAILED [ 94/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-classic-DataChunkIterator-iterator_options2] FAILED [ 95/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-unwrapped-<lambda>-iterator_options0] FAILED [ 96/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-generic-SliceableDataChunkIterator-iterator_options1] FAILED [ 97/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-classic-DataChunkIterator-iterator_options2] FAILED [ 98/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_dynamic_table[hdf5] FAILED [ 99/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_dynamic_table[zarr] FAILED [100/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] FAILED [101/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] FAILED [102/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] FAILED [103/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] FAILED [104/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] FAILED [105/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] FAILED [106/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-unwrapped-<lambda>-iterator_options0] FAILED [107/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-generic-SliceableDataChunkIterator-iterator_options1] FAILED [108/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-classic-DataChunkIterator-iterator_options2] FAILED [109/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-unwrapped-<lambda>-iterator_options0] FAILED [110/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-generic-SliceableDataChunkIterator-iterator_options1] FAILED [111/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-classic-DataChunkIterator-iterator_options2] FAILED [112/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_dynamic_table_override[hdf5] FAILED [113/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_dynamic_table_override[zarr] FAILED [114/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_backend_configuration.py::test_complex_hdf5 PASSED [115/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_backend_configuration.py::test_complex_zarr PASSED [116/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[hdf5-<lambda>] PASSED [117/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[hdf5-SliceableDataChunkIterator] PASSED [118/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[hdf5-DataChunkIterator] PASSED [119/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[zarr-<lambda>] PASSED [120/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[zarr-SliceableDataChunkIterator] PASSED [121/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_time_series[zarr-DataChunkIterator] PASSED [122/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_external_image_series[hdf5] PASSED [123/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_external_image_series[zarr] PASSED [124/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[hdf5-<lambda>] PASSED [125/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[hdf5-SliceableDataChunkIterator] PASSED [126/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[hdf5-DataChunkIterator] PASSED [127/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[zarr-<lambda>] PASSED [128/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[zarr-SliceableDataChunkIterator] PASSED [129/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_dynamic_table[zarr-DataChunkIterator] PASSED [130/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_ragged_units_table[hdf5] PASSED [131/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_ragged_units_table[zarr] PASSED [132/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[hdf5-<lambda>] PASSED [133/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[hdf5-SliceableDataChunkIterator] PASSED [134/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[hdf5-DataChunkIterator] PASSED [135/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[zarr-<lambda>] PASSED [136/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[zarr-SliceableDataChunkIterator] PASSED [137/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_compass_direction[zarr-DataChunkIterator] PASSED [138/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_ndx_events[hdf5] SKIPPED [139/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_ndx_events[zarr] SKIPPED [140/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations_appended_files.py::test_unwrapped_time_series_hdf5 PASSED [141/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations_appended_files.py::test_unwrapped_time_series_zarr PASSED [142/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations_appended_files.py::test_unwrapped_dynamic_table_hdf5 PASSED [143/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations_appended_files.py::test_unwrapped_dynamic_table_zarr PASSED [144/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_dataset_io_configuration_model.py::test_get_data_io_kwargs_abstract_error PASSED [145/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_dataset_io_configuration_model.py::test_get_data_io_kwargs_not_implemented PASSED [146/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_backend_configuration_model.py::test_hdf5_backend_configuration_print PASSED [147/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_hdf5_dataset_configuration_print PASSED [148/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_hdf5_dataset_configuration_print_with_compression_options PASSED [149/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_hdf5_dataset_configuration_print_with_compression_disabled PASSED [150/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_hdf5_dataset_configuration_repr PASSED [151/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_available_hdf5_compression_methods_not_empty PASSED [152/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_default_compression_is_always_available PASSED [153/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_hdf5_dataset_io_configuration_model.py::test_get_data_io_kwargs PASSED [154/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_backend_configuration_model.py::test_zarr_backend_configuration_print PASSED [155/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_io_configuration_print PASSED [156/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_configuration_print_with_compression_options PASSED [157/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_configuration_print_with_compression_disabled PASSED [158/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_configuration_print_with_filter_methods PASSED [159/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_configuration_print_with_filter_options PASSED [160/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_zarr_dataset_configuration_repr PASSED [161/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_validator_filter_options_has_methods PASSED [162/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_validator_filter_methods_length_match_options PASSED [163/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_available_zarr_compression_methods_not_empty PASSED [164/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_default_compression_is_always_available PASSED [165/270]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_models/test_zarr_dataset_io_configuration_model.py::test_get_data_io_kwargs PASSED [166/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_deep_update PASSED                                                 [167/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_deep_update_kwargs_input PASSED                                    [168/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_deepcopy PASSED                                                    [169/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_dict_magic PASSED                                                  [170/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_getitem PASSED                                                     [171/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_getitem_hashable PASSED                                            [172/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_missing_key PASSED                                                 [173/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_recursive_conversion PASSED                                        [174/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_repr PASSED                                                        [175/270]
tests/test_minimal/test_utils/test_dict.py::TestDeepDict::test_to_dict PASSED                                                     [176/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_get_schema_from_method_signature PASSED                             [177/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_dict_deep_update_1 PASSED                                           [178/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_dict_deep_update_2 PASSED                                           [179/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_dict_deep_update_3 PASSED                                           [180/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_dict_deep_update_4 PASSED                                           [181/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_fill_defaults PASSED                                                [182/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_load_metadata_from_file PASSED                                      [183/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_get_schema_from_ImagingPlane_array_type PASSED                      [184/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_get_schema_from_TwoPhotonSeries_array_type PASSED                   [185/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_np_array_encoding PASSED                                            [186/270]
tests/test_minimal/test_utils/test_json_schema_utils.py::test_get_schema_from_NWBDataInterface PASSED                             [187/270]
tests/test_minimal/test_utils/test_path.py::test_windows_path PASSED                                                              [188/270]
tests/test_minimal/test_utils/test_path.py::test_unix_path PASSED                                                                 [189/270]
tests/test_minimal/test_utils/test_path.py::test_mixed_path PASSED                                                                [190/270]
tests/test_minimal/test_utils/test_utils.py::test_check_regular_series PASSED                                                     [191/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestRecordingInterface::test_no_slash_in_name PASSED                               [192/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestRecordingInterface::test_stub_multi_segment PASSED                             [193/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestRecordingInterface::test_stub_single_segment PASSED                            [194/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestAssertions::test_spike2_import_assertions_3_10 SKIPPED (Only testing with Python
3.10!)                                                                                                                            [195/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestAssertions::test_spike2_import_assertions_3_11 PASSED                          [196/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestSortingInterface::test_sorting_full PASSED                                     [197/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestSortingInterface::test_sorting_propagate_conversion_options PASSED             [198/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestSortingInterface::test_sorting_stub PASSED                                     [199/270]
tests/test_ecephys/test_ecephys_interfaces.py::TestSortingInterface::test_sorting_stub_with_recording PASSED                      [200/270]
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_current_default_inferred_ttl_times PASSED     [201/270]
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_custom_inferred_ttl_times PASSED              [202/270]
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_explicit_original_default_inferred_ttl_times PASSED [203/270]
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_mock_metadata PASSED                          [204/270]
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_mock_run_conversion PASSED                    [205/270]
tests/test_ecephys/test_mock_recording_interface.py::TestMockRecordingInterface::test_conversion_as_lone_interface <- ../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/testing/data_interface_mixins.py FAILED [206/270]
tests/test_ecephys/test_mock_recording_interface.py::TestMockRecordingInterface::test_interface_alignment <- ../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/testing/data_interface_mixins.py PASSED [207/270]
tests/test_ecephys/test_mock_recording_interface.py::TestMockRecordingInterface::test_source_schema_valid <- ../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/testing/data_interface_mixins.py PASSED [208/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_default_values PASSED                       [209/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_invalid_write_as_argument_assertion PASSED  [210/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_as_lfp PASSED                         [211/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_as_processing PASSED                  [212/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_multiple_electrical_series_from_same_electrode_group PASSED [213/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_multiple_electrical_series_with_different_electrode_groups PASSED [214/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_with_higher_gzip_level PASSED         [215/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_with_lzf_compression PASSED           [216/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesSavingTimestampsVsRates::test_non_uniform_timestamps PASSED [217/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesSavingTimestampsVsRates::test_uniform_timestamps PASSED   [218/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesVoltsScaling::test_null_offsets_in_recording_extractor PASSED [219/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesVoltsScaling::test_uniform_non_default PASSED             [220/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesVoltsScaling::test_uniform_values PASSED                  [221/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesVoltsScaling::test_variable_gains PASSED                  [222/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesVoltsScaling::test_variable_offsets_assertion PASSED      [223/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_default_chunking PASSED                    [224/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_hdfm_iterator PASSED                       [225/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_invalid_iterator_type_assertion PASSED     [226/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_iterator_opts_propagation PASSED           [227/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_non_iterative_write PASSED                 [228/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesChunking::test_non_iterative_write_assertion PASSED       [229/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteRecording::test_default_values_single_segment PASSED                    [230/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteRecording::test_write_bool_properties PASSED                            [231/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteRecording::test_write_multiple_segments PASSED                          [232/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_add_electrodes_addition PASSED                           [233/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_channel_group_names_table PASSED                         [234/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_common_property_extension PASSED                         [235/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_default_electrode_column_names PASSED                    [236/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_integer_channel_names PASSED                             [237/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_manual_row_adition_after_add_electrodes_function PASSED  [238/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_manual_row_adition_before_add_electrodes_function PASSED [239/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_manual_row_adition_before_add_electrodes_function_optional_columns PASSED [240/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_new_property_addition PASSED                             [241/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_non_overwriting_channel_names_property PASSED            [242/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_property_metadata_mismatch PASSED                        [243/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_row_matching_by_channel_name_with_existing_property PASSED [244/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_row_matching_by_channel_name_with_new_property PASSED    [245/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectrodes::test_string_channel_names PASSED                              [246/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_add_existing_units PASSED                                [247/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_common_property_extension PASSED                         [248/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_integer_unit_names PASSED                                [249/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_integer_unit_names_overwrite PASSED                      [250/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_manual_extension_after_add_units_table PASSED            [251/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_non_overwriting_unit_names_sorting_property PASSED       [252/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_property_addition PASSED                                 [253/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_property_matching_by_unit_name_with_existing_property PASSED [254/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_property_matching_by_unit_name_with_new_property PASSED  [255/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_string_unit_names PASSED                                 [256/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_string_unit_names_overwrite PASSED                       [257/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_units_table_extension_after_manual_unit_addition PASSED  [258/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_write_bool_properties PASSED                             [259/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_write_subset_units PASSED                                [260/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestAddUnitsTable::test_write_units_table_in_processing_module PASSED            [261/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property PASSED                              [262/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_missing_electrode_group PASSED                          [263/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_units_table_name PASSED                                 [264/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_multiple_probes_with_electrical_series PASSED     [265/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_multiple_probes_without_electrical_series PASSED  [266/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_multiple_segments PASSED                          [267/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_recordingless PASSED                              [268/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_single_segment PASSED                             [269/270]
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_write_subset_units PASSED                               [270/270]

================================================================= FAILURES =================================================================
____________________________________ test_simple_time_series[hdf5-unwrapped-<lambda>-iterator_options0] ____________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_u0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da632660>, iterator_options = {}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='6f9579ae-af14-4eb7-a470-e4ec3dea2776', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
case_name  = 'unwrapped'
data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
dataset_configuration = HDF5DatasetIOConfiguration(object_id='6f9579ae-af14-4eb7-a470-e4ec3dea2776', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <function <lambda> at 0x7f29da632660>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817685231632
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 695676, tzinfo=tzlocal())]
  identifier: 288fb792-2cef-4987-adcb-44e60547da2d
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817685079504
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_u0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='6f9579ae-af14-4eb7-a470-e4ec3dea2776', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='6f9579ae-af14-4eb7-a470-e4ec3dea2776', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817685231632
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 695676, tzinfo=tzlocal())]
  identifier: 288fb792-2cef-4987-adcb-44e60547da2d
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817685079504
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'160d0b64-27f7-475e-9b16-9bfe2e85b1e5': root pynwb.file.NWBFile at 0x139817685231632
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 695676, tzinfo=tzlocal())]
  identifier: 288fb792-2cef-4987-adcb-44e60547da2d
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 '6f9579ae-af14-4eb7-a470-e4ec3dea2776': TestTimeSeries pynwb.base.TimeSeries at 0x139817685079504
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = '6f9579ae-af14-4eb7-a470-e4ec3dea2776'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817685079504
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7a46710>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7a46710>,)
kwargs = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -...2,  -3284]], dtype=int16), 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7a46710>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
____________________________ test_simple_time_series[hdf5-generic-SliceableDataChunkIterator-iterator_options1] ____________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_g0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, iterator_options = {}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='eb6f40b0-6453-46e3-8e57-6caf39527d4e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
case_name  = 'generic'
data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
dataset_configuration = HDF5DatasetIOConfiguration(object_id='eb6f40b0-6453-46e3-8e57-6caf39527d4e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817698881872
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 885482, tzinfo=tzlocal())]
  identifier: 37f5a8e8-917c-49fe-8f53-8a59fcaceb45
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817689965200
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_g0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='eb6f40b0-6453-46e3-8e57-6caf39527d4e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='eb6f40b0-6453-46e3-8e57-6caf39527d4e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817698881872
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 885482, tzinfo=tzlocal())]
  identifier: 37f5a8e8-917c-49fe-8f53-8a59fcaceb45
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817689965200
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'6a2c1674-4ff4-4567-b90b-c847e0a0ac4a': root pynwb.file.NWBFile at 0x139817698881872
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 40, 885482, tzinfo=tzlocal())]
  identifier: 37f5a8e8-917c-49fe-8f53-8a59fcaceb45
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'eb6f40b0-6453-46e3-8e57-6caf39527d4e': TestTimeSeries pynwb.base.TimeSeries at 0x139817689965200
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'eb6f40b0-6453-46e3-8e57-6caf39527d4e'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817689965200
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7be4f50>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7be4f50>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>, 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7be4f50>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29da129890>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
________________________________ test_simple_time_series[hdf5-classic-DataChunkIterator-iterator_options2] _________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_c0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>, iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='4e3b5aec-b329-4aea-9c0b-88a1bb3949c5', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
case_name  = 'classic'
data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
dataset_configuration = HDF5DatasetIOConfiguration(object_id='4e3b5aec-b329-4aea-9c0b-88a1bb3949c5', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
nwbfile    = root pynwb.file.NWBFile at 0x139817687664400
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 408010, tzinfo=tzlocal())]
  identifier: e2f5d2b1-707f-42b1-b322-6f475da2467b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817687665360
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_hdf5_c0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='4e3b5aec-b329-4aea-9c0b-88a1bb3949c5', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='4e3b5aec-b329-4aea-9c0b-88a1bb3949c5', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817687664400
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 408010, tzinfo=tzlocal())]
  identifier: e2f5d2b1-707f-42b1-b322-6f475da2467b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817687665360
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'4e3b5aec-b329-4aea-9c0b-88a1bb3949c5': TestTimeSeries pynwb.base.TimeSeries at 0x139817687665360
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
,
 'bc32bbdc-1a4f-4726-90bd-4445a24950ad': root pynwb.file.NWBFile at 0x139817687664400
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 408010, tzinfo=tzlocal())]
  identifier: e2f5d2b1-707f-42b1-b322-6f475da2467b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
}
        object_id  = '4e3b5aec-b329-4aea-9c0b-88a1bb3949c5'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817687665360
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d79b6ad0>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d79b6ad0>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>, 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d79b6ad0>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7ed0>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
____________________________________ test_simple_time_series[zarr-unwrapped-<lambda>-iterator_options0] ____________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_u0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da632660>, iterator_options = {}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='8ccc9c56-60ce-4ccb-a24a-95f0e6401b59', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'unwrapped'
data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
dataset_configuration = ZarrDatasetIOConfiguration(object_id='8ccc9c56-60ce-4ccb-a24a-95f0e6401b59', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <function <lambda> at 0x7f29da632660>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817683015440
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 468867, tzinfo=tzlocal())]
  identifier: f3a79c3e-9746-4f37-8ff6-8416703333d5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817683014544
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_u0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='8ccc9c56-60ce-4ccb-a24a-95f0e6401b59', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='8ccc9c56-60ce-4ccb-a24a-95f0e6401b59', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817683015440
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 468867, tzinfo=tzlocal())]
  identifier: f3a79c3e-9746-4f37-8ff6-8416703333d5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817683014544
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'8ccc9c56-60ce-4ccb-a24a-95f0e6401b59': TestTimeSeries pynwb.base.TimeSeries at 0x139817683014544
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
,
 'eda2c266-0642-4705-9937-192668387a21': root pynwb.file.NWBFile at 0x139817683015440
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 468867, tzinfo=tzlocal())]
  identifier: f3a79c3e-9746-4f37-8ff6-8416703333d5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
}
        object_id  = '8ccc9c56-60ce-4ccb-a24a-95f0e6401b59'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817683014544
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7544e10>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7544e10>,)
kwargs = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -...5762,  -3284]], dtype=int16), 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7544e10>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
____________________________ test_simple_time_series[zarr-generic-SliceableDataChunkIterator-iterator_options1] ____________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_g0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, iterator_options = {}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='d873007f-b05c-46ae-8bda-65e3a16d22ca', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'generic'
data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
dataset_configuration = ZarrDatasetIOConfiguration(object_id='d873007f-b05c-46ae-8bda-65e3a16d22ca', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817688730576
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 519745, tzinfo=tzlocal())]
  identifier: fdd9553b-b19b-4d04-94e6-0506fe6c91a5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817680468240
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_g0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='d873007f-b05c-46ae-8bda-65e3a16d22ca', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='d873007f-b05c-46ae-8bda-65e3a16d22ca', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817688730576
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 519745, tzinfo=tzlocal())]
  identifier: fdd9553b-b19b-4d04-94e6-0506fe6c91a5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817680468240
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'c9e54d7b-ef81-4e03-8ce6-0181b398123e': root pynwb.file.NWBFile at 0x139817688730576
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 42, 519745, tzinfo=tzlocal())]
  identifier: fdd9553b-b19b-4d04-94e6-0506fe6c91a5
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'd873007f-b05c-46ae-8bda-65e3a16d22ca': TestTimeSeries pynwb.base.TimeSeries at 0x139817680468240
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'd873007f-b05c-46ae-8bda-65e3a16d22ca'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817680468240
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d72d5ed0>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d72d5ed0>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>, 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d72d5ed0>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7ab9710>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
________________________________ test_simple_time_series[zarr-classic-DataChunkIterator-iterator_options2] _________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_c0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>, iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data = iterator(integer_array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='57a4ea63-d9eb-4ff4-88c5-47349be9e0e6', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'classic'
data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
dataset_configuration = ZarrDatasetIOConfiguration(object_id='57a4ea63-d9eb-4ff4-88c5-47349be9e0e6', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
nwbfile    = root pynwb.file.NWBFile at 0x139817684150992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 33351, tzinfo=tzlocal())]
  identifier: 49d22803-003b-4741-a0ca-17ea48ff74eb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817684146832
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_zarr_c0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='57a4ea63-d9eb-4ff4-88c5-47349be9e0e6', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='57a4ea63-d9eb-4ff4-88c5-47349be9e0e6', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817684150992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 33351, tzinfo=tzlocal())]
  identifier: 49d22803-003b-4741-a0ca-17ea48ff74eb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817684146832
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'57a4ea63-d9eb-4ff4-88c5-47349be9e0e6': TestTimeSeries pynwb.base.TimeSeries at 0x139817684146832
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
,
 'deb3bd14-ae3f-49b1-8d7c-937196b3c673': root pynwb.file.NWBFile at 0x139817684150992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 33351, tzinfo=tzlocal())]
  identifier: 49d22803-003b-4741-a0ca-17ea48ff74eb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
}
        object_id  = '57a4ea63-d9eb-4ff4-88c5-47349be9e0e6'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817684146832
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7659c50>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7659c50>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>, 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7659c50>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7659d50>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_____________________________________________________ test_simple_dynamic_table[hdf5] ______________________________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_hdf50')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
backend = 'hdf5'

    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_dynamic_table(tmpdir: Path, integer_array: np.ndarray, backend: Literal["hdf5", "zarr"]):
        nwbfile = mock_NWBFile()
        dynamic_table = DynamicTable(
            name="TestDynamicTable",
            description="",
            columns=[VectorData(name="TestColumn", description="", data=integer_array)],
        )
        nwbfile.add_acquisition(dynamic_table)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestDynamicTable/TestColumn/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfiguration(object_id='15637e3d-7454-4d7a-9c1d-0e400a5476b6', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
dataset_configuration = HDF5DatasetIOConfiguration(object_id='15637e3d-7454-4d7a-9c1d-0e400a5476b6', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
dynamic_table = TestDynamicTable hdmf.common.table.DynamicTable at 0x139817681019792
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>

integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
nwbfile    = root pynwb.file.NWBFile at 0x139817687489040
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 98611, tzinfo=tzlocal())]
  identifier: 364560ac-f43e-4f56-aa8c-f93233f481a9
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_hdf50')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:99: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

nwbfile = root pynwb.file.NWBFile at 0x139817687489040
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.D...ion_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfigur...000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})

    def configure_backend(
        nwbfile: NWBFile, backend_configuration: Union[HDF5BackendConfiguration, ZarrBackendConfiguration]
    ) -> None:
        """Configure all datasets specified in the `backend_configuration` with their appropriate DataIO and options."""
        nwbfile_objects = nwbfile.objects
    
        data_io_class = backend_configuration.data_io_class
        for dataset_configuration in backend_configuration.dataset_configurations.values():
            object_id = dataset_configuration.object_id
            dataset_name = dataset_configuration.dataset_name
            data_io_kwargs = dataset_configuration.get_data_io_kwargs()
    
            # TODO: update buffer shape in iterator, if present
    
            nwbfile_object = nwbfile_objects[object_id]
            is_dataset_linked = isinstance(nwbfile_object.fields.get(dataset_name), TimeSeries)
            # Table columns
            if isinstance(nwbfile_object, Data):
>               nwbfile_object.set_data_io(data_io_class=data_io_class, data_io_kwargs=data_io_kwargs)
E               AttributeError: 'VectorData' object has no attribute 'set_data_io'

backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfiguration(object_id='15637e3d-7454-4d7a-9c1d-0e400a5476b6', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)})
data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
dataset_configuration = HDF5DatasetIOConfiguration(object_id='15637e3d-7454-4d7a-9c1d-0e400a5476b6', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
dataset_name = 'data'
is_dataset_linked = False
nwbfile    = root pynwb.file.NWBFile at 0x139817687489040
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 98611, tzinfo=tzlocal())]
  identifier: 364560ac-f43e-4f56-aa8c-f93233f481a9
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

nwbfile_object = <hdmf.common.table.VectorData object at 0x7f29d735d610>
nwbfile_objects = {'15637e3d-7454-4d7a-9c1d-0e400a5476b6': <hdmf.common.table.VectorData object at 0x7f29d735d610>,
 'bd48ed04-6d2b-4035-b4dc-e297c780d97d': root pynwb.file.NWBFile at 0x139817687489040
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 98611, tzinfo=tzlocal())]
  identifier: 364560ac-f43e-4f56-aa8c-f93233f481a9
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'd769f389-c5b5-4536-8ce5-2f94ef78c7af': <hdmf.common.table.ElementIdentifiers object at 0x7f29d735d3d0>,
 'f9b72107-72d0-4d4d-bb03-51b8df817406': TestDynamicTable hdmf.common.table.DynamicTable at 0x139817681019792
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>
}
object_id  = '15637e3d-7454-4d7a-9c1d-0e400a5476b6'

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:30: AttributeError
_____________________________________________________ test_simple_dynamic_table[zarr] ______________________________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_zarr0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
backend = 'zarr'

    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_dynamic_table(tmpdir: Path, integer_array: np.ndarray, backend: Literal["hdf5", "zarr"]):
        nwbfile = mock_NWBFile()
        dynamic_table = DynamicTable(
            name="TestDynamicTable",
            description="",
            columns=[VectorData(name="TestColumn", description="", data=integer_array)],
        )
        nwbfile.add_acquisition(dynamic_table)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestDynamicTable/TestColumn/data"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfiguration(object_id='08d0a7f5-9336-4d79-a55f-cf7fdd51c013', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
dataset_configuration = ZarrDatasetIOConfiguration(object_id='08d0a7f5-9336-4d79-a55f-cf7fdd51c013', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
dynamic_table = TestDynamicTable hdmf.common.table.DynamicTable at 0x139817681022224
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>

integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
nwbfile    = root pynwb.file.NWBFile at 0x139817681014096
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 112537, tzinfo=tzlocal())]
  identifier: 5db077a3-2af4-4fd0-a1fd-6f3ac6a29956
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_zarr0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:99: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

nwbfile = root pynwb.file.NWBFile at 0x139817681014096
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.D...ion_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfigur...4), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)

    def configure_backend(
        nwbfile: NWBFile, backend_configuration: Union[HDF5BackendConfiguration, ZarrBackendConfiguration]
    ) -> None:
        """Configure all datasets specified in the `backend_configuration` with their appropriate DataIO and options."""
        nwbfile_objects = nwbfile.objects
    
        data_io_class = backend_configuration.data_io_class
        for dataset_configuration in backend_configuration.dataset_configurations.values():
            object_id = dataset_configuration.object_id
            dataset_name = dataset_configuration.dataset_name
            data_io_kwargs = dataset_configuration.get_data_io_kwargs()
    
            # TODO: update buffer shape in iterator, if present
    
            nwbfile_object = nwbfile_objects[object_id]
            is_dataset_linked = isinstance(nwbfile_object.fields.get(dataset_name), TimeSeries)
            # Table columns
            if isinstance(nwbfile_object, Data):
>               nwbfile_object.set_data_io(data_io_class=data_io_class, data_io_kwargs=data_io_kwargs)
E               AttributeError: 'VectorData' object has no attribute 'set_data_io'

backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfiguration(object_id='08d0a7f5-9336-4d79-a55f-cf7fdd51c013', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
dataset_configuration = ZarrDatasetIOConfiguration(object_id='08d0a7f5-9336-4d79-a55f-cf7fdd51c013', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
dataset_name = 'data'
is_dataset_linked = False
nwbfile    = root pynwb.file.NWBFile at 0x139817681014096
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 112537, tzinfo=tzlocal())]
  identifier: 5db077a3-2af4-4fd0-a1fd-6f3ac6a29956
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

nwbfile_object = <hdmf.common.table.VectorData object at 0x7f29d735f850>
nwbfile_objects = {'08d0a7f5-9336-4d79-a55f-cf7fdd51c013': <hdmf.common.table.VectorData object at 0x7f29d735f850>,
 '385aa403-a827-40ac-a8e3-35aa20b3d79e': <hdmf.common.table.ElementIdentifiers object at 0x7f29d7317e90>,
 '512e749f-22a0-4c95-8388-f7593c3de969': TestDynamicTable hdmf.common.table.DynamicTable at 0x139817681022224
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>
,
 'f0ff992e-ac40-4172-8c12-b8237bd3b173': root pynwb.file.NWBFile at 0x139817681014096
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 112537, tzinfo=tzlocal())]
  identifier: 5db077a3-2af4-4fd0-a1fd-6f3ac6a29956
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
}
object_id  = '08d0a7f5-9336-4d79-a55f-cf7fdd51c013'

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:30: AttributeError
_____________ test_time_series_timestamps_linkage[hdf5-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] _____________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li0')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da6337e0>, data_iterator_options = {}, timestamps_iterator_options = {}
backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='b7c66efe-9685-44fc-bff1-e177c16aa9d3', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='b7c66efe-9685-44fc-bff1-e177c16aa9d3', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
case_name  = 'unwrapped'
data_1     = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
data_2     = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
data_iterator_options = {}
dataset_configuration_1 = HDF5DatasetIOConfiguration(object_id='b7c66efe-9685-44fc-bff1-e177c16aa9d3', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
dataset_configuration_2 = HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <function <lambda> at 0x7f29da6337e0>
nwbfile    = root pynwb.file.NWBFile at 0x139817682475600
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 126464, tzinfo=tzlocal())]
  identifier: 1344c48d-b7b3-44a3-8154-3a8ecde3919c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817682478928
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)
timestamps_iterator_options = {}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='b7c66efe-9685-44fc-bff1-e177c16aa9d3', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='b7c66efe-9685-44fc-bff1-e177c16aa9d3', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='4b6ee92c-f236-43d0-a69c-a827023173e4', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817682475600
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 126464, tzinfo=tzlocal())]
  identifier: 1344c48d-b7b3-44a3-8154-3a8ecde3919c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817682478928
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'4b6ee92c-f236-43d0-a69c-a827023173e4': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817682478928
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
,
 '5232a662-d40c-4f1d-9a23-2105e2a0b90c': root pynwb.file.NWBFile at 0x139817682475600
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 126464, tzinfo=tzlocal())]
  identifier: 1344c48d-b7b3-44a3-8154-3a8ecde3919c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'b7c66efe-9685-44fc-bff1-e177c16aa9d3': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts
}
        object_id  = '4b6ee92c-f236-43d0-a69c-a827023173e4'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817682478928
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817682469072
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d74c0390>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d74c0390>,)
kwargs = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -...2,  -3284]], dtype=int16), 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d74c0390>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_____ test_time_series_timestamps_linkage[hdf5-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] _____

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li1')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, data_iterator_options = {}
timestamps_iterator_options = {}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='7734bf45-1a5b-43ab-9583-51b4b19b5dee', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='7734bf45-1a5b-43ab-9583-51b4b19b5dee', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
case_name  = 'generic'
data_1     = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
data_2     = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
data_iterator_options = {}
dataset_configuration_1 = HDF5DatasetIOConfiguration(object_id='7734bf45-1a5b-43ab-9583-51b4b19b5dee', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
dataset_configuration_2 = HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
nwbfile    = root pynwb.file.NWBFile at 0x139817685840784
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 186805, tzinfo=tzlocal())]
  identifier: b529a4af-4158-47e2-93b0-efc95d56afdd
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817685839248
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)
timestamps_iterator_options = {}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li1')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='7734bf45-1a5b-43ab-9583-51b4b19b5dee', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='7734bf45-1a5b-43ab-9583-51b4b19b5dee', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817685840784
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 186805, tzinfo=tzlocal())]
  identifier: b529a4af-4158-47e2-93b0-efc95d56afdd
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817685839248
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'7734bf45-1a5b-43ab-9583-51b4b19b5dee': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts
,
 'c48ae3a5-3596-48eb-8e54-845cfe65eb92': root pynwb.file.NWBFile at 0x139817685840784
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 44, 186805, tzinfo=tzlocal())]
  identifier: b529a4af-4158-47e2-93b0-efc95d56afdd
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817685839248
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
}
        object_id  = 'e84c2dc8-ffbd-4a86-9e7f-e9a8d2c1b481'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817685839248
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817685829008
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f50d0>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d77f6b90>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d77f6b90>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>, 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d77f6b90>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d77f5a10>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_________ test_time_series_timestamps_linkage[hdf5-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] __________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li2')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>
data_iterator_options = {'buffer_size': 30000, 'iter_axis': 1}, timestamps_iterator_options = {'buffer_size': 30000}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='cdfc095f-23d5-4f24-ace5-ecc5e96f4310', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='cdfc095f-23d5-4f24-ace5-ecc5e96f4310', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
case_name  = 'classic'
data_1     = <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
data_2     = <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
data_iterator_options = {'buffer_size': 30000, 'iter_axis': 1}
dataset_configuration_1 = HDF5DatasetIOConfiguration(object_id='cdfc095f-23d5-4f24-ace5-ecc5e96f4310', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
dataset_configuration_2 = HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
nwbfile    = root pynwb.file.NWBFile at 0x139817686394320
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 278202, tzinfo=tzlocal())]
  identifier: 71e29bef-a18c-48da-85ea-3ab3a1e5dc40
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817686397200
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)
timestamps_iterator_options = {'buffer_size': 30000}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li2')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries2/timestamps': HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/data': HDF5DatasetIOConfiguration(object_id='cdfc095f-23d5-4f24-ace5-ecc5e96f4310', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None), 'acquisition/TestTimeSeries1/timestamps': HDF5DatasetIOConfiguration(object_id='cdfc095f-23d5-4f24-ace5-ecc5e96f4310', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None)})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='33ae2664-69ca-461a-8aaa-bf593fd821a7', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817686394320
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 278202, tzinfo=tzlocal())]
  identifier: 71e29bef-a18c-48da-85ea-3ab3a1e5dc40
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817686397200
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'33ae2664-69ca-461a-8aaa-bf593fd821a7': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817686397200
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
,
 '893ca8b3-504d-4004-bf0f-d3489beda75c': root pynwb.file.NWBFile at 0x139817686394320
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 278202, tzinfo=tzlocal())]
  identifier: 71e29bef-a18c-48da-85ea-3ab3a1e5dc40
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'cdfc095f-23d5-4f24-ace5-ecc5e96f4310': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts
}
        object_id  = '33ae2664-69ca-461a-8aaa-bf593fd821a7'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817686397200
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817686394768
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e710>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d787e510>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d787d290>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d787d290>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>, 'data_io_kwargs': {'chunks': (44070, 113), 'compression': 'gzip', 'compression_opts': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d787d290>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compression': 'gzip',
                    'compression_opts': None}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d787ef10>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_____________ test_time_series_timestamps_linkage[zarr-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] _____________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li3')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da6337e0>, data_iterator_options = {}, timestamps_iterator_options = {}
backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='c7e4e8e9-7011-4ae5-b87d-69d6934e4b38', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='c7e4e8e9-7011-4ae5-b87d-69d6934e4b38', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'unwrapped'
data_1     = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
data_2     = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
data_iterator_options = {}
dataset_configuration_1 = ZarrDatasetIOConfiguration(object_id='c7e4e8e9-7011-4ae5-b87d-69d6934e4b38', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
dataset_configuration_2 = ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <function <lambda> at 0x7f29da6337e0>
nwbfile    = root pynwb.file.NWBFile at 0x139817689956432
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 393705, tzinfo=tzlocal())]
  identifier: e5088e07-00c0-4fca-b279-d170be429381
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817689961424
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
timestamps_iterator_options = {}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li3')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='c7e4e8e9-7011-4ae5-b87d-69d6934e4b38', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='c7e4e8e9-7011-4ae5-b87d-69d6934e4b38', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='5f073065-afb3-4832-a342-a1ae7a14de62', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817689956432
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 393705, tzinfo=tzlocal())]
  identifier: e5088e07-00c0-4fca-b279-d170be429381
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817689961424
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'1243363d-0a61-4f40-a535-6f9fcfa5190f': root pynwb.file.NWBFile at 0x139817689956432
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 393705, tzinfo=tzlocal())]
  identifier: e5088e07-00c0-4fca-b279-d170be429381
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 '5f073065-afb3-4832-a342-a1ae7a14de62': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817689961424
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
,
 'c7e4e8e9-7011-4ae5-b87d-69d6934e4b38': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts
}
        object_id  = '5f073065-afb3-4832-a342-a1ae7a14de62'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817689961424
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817689968336
Fields:
  comments: no comments
  conversion: 1.0
  data: [[   606  22977  27598 ...  21453  14831  29962]
 [-26530  -9155  -6666 ...  18490  -6943   1704]
 [ 10727  16504  20858 ... -14473  23537  17539]
 ...
 [ 20291  10140  26729 ...  -5514   8882  19710]
 [ 22656  25954 -21319 ...  -8983 -30074 -24446]
 [-30841 -12815  28599 ...  24069 -15762  -3284]]
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: [0.00000000e+00 6.66671111e-06 1.33334222e-05 ... 9.99986667e-01
 9.99993333e-01 1.00000000e+00]
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7be69d0>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7be69d0>,)
kwargs = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -...5762,  -3284]], dtype=int16), 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7be69d0>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16),
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_____ test_time_series_timestamps_linkage[zarr-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] _____

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li4')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, data_iterator_options = {}
timestamps_iterator_options = {}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='2a5d0180-9491-4588-91fe-28d492505265', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='2a5d0180-9491-4588-91fe-28d492505265', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'generic'
data_1     = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
data_2     = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
data_iterator_options = {}
dataset_configuration_1 = ZarrDatasetIOConfiguration(object_id='2a5d0180-9491-4588-91fe-28d492505265', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
dataset_configuration_2 = ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
nwbfile    = root pynwb.file.NWBFile at 0x139817681325584
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 448291, tzinfo=tzlocal())]
  identifier: 41d7ed14-10e4-44ff-9ffc-879ad92bcfba
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817681324112
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
timestamps_iterator_options = {}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li4')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='2a5d0180-9491-4588-91fe-28d492505265', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='2a5d0180-9491-4588-91fe-28d492505265', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='4598ed0e-be1c-47a9-a365-45e92acfe66e', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817681325584
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 448291, tzinfo=tzlocal())]
  identifier: 41d7ed14-10e4-44ff-9ffc-879ad92bcfba
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817681324112
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'2a5d0180-9491-4588-91fe-28d492505265': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts
,
 '4598ed0e-be1c-47a9-a365-45e92acfe66e': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817681324112
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
,
 '5491459e-e5a2-4a69-9050-63f74cdd9ee1': root pynwb.file.NWBFile at 0x139817681325584
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 47, 448291, tzinfo=tzlocal())]
  identifier: 41d7ed14-10e4-44ff-9ffc-879ad92bcfba
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
}
        object_id  = '4598ed0e-be1c-47a9-a365-45e92acfe66e'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817681324112
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817681325712
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73a8f50>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aad10>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d73abb90>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d73abb90>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>, 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d73abb90>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d73aa090>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_________ test_time_series_timestamps_linkage[zarr-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] __________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li5')
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1...5954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>
data_iterator_options = {'buffer_size': 30000, 'iter_axis': 1}, timestamps_iterator_options = {'buffer_size': 30000}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,data_iterator_options,timestamps_iterator_options",
        [
            ("unwrapped", lambda x: x, dict(), dict()),
            ("generic", SliceableDataChunkIterator, dict(), dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000), dict(buffer_size=30_000)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_time_series_timestamps_linkage(
        tmpdir: Path,
        integer_array: np.ndarray,
        case_name: str,
        iterator: callable,
        data_iterator_options: dict,
        timestamps_iterator_options: dict,
        backend: Literal["hdf5", "zarr"],
    ):
        data_1 = iterator(integer_array, **data_iterator_options)
        data_2 = iterator(integer_array, **data_iterator_options)
    
        timestamps_array = np.linspace(start=0.0, stop=1.0, num=integer_array.shape[0])
        timestamps = iterator(timestamps_array, **timestamps_iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series_1 = mock_TimeSeries(name="TestTimeSeries1", data=data_1, timestamps=timestamps, rate=None)
        nwbfile.add_acquisition(time_series_1)
    
        time_series_2 = mock_TimeSeries(name="TestTimeSeries2", data=data_2, timestamps=time_series_1, rate=None)
        nwbfile.add_acquisition(time_series_2)
    
        # Note that the field will still show up in the configuration display
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        # print(backend_configuration)
        dataset_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/data"]
        dataset_configuration_2 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/data"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries1/timestamps"]
        timestamps_configuration_1 = backend_configuration.dataset_configurations["acquisition/TestTimeSeries2/timestamps"]
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='6845cf33-68c7-45b5-adea-ae10bb92ae4e', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='6845cf33-68c7-45b5-adea-ae10bb92ae4e', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'classic'
data_1     = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
data_2     = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
data_iterator_options = {'buffer_size': 30000, 'iter_axis': 1}
dataset_configuration_1 = ZarrDatasetIOConfiguration(object_id='6845cf33-68c7-45b5-adea-ae10bb92ae4e', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
dataset_configuration_2 = ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
integer_array = array([[   606,  22977,  27598, ...,  21453,  14831,  29962],
       [-26530,  -9155,  -6666, ...,  18490,  -6943,   1704],
       [ 10727,  16504,  20858, ..., -14473,  23537,  17539],
       ...,
       [ 20291,  10140,  26729, ...,  -5514,   8882,  19710],
       [ 22656,  25954, -21319, ...,  -8983, -30074, -24446],
       [-30841, -12815,  28599, ...,  24069, -15762,  -3284]], dtype=int16)
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
nwbfile    = root pynwb.file.NWBFile at 0x139817687664720
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 515913, tzinfo=tzlocal())]
  identifier: 90461a86-307c-4a5d-a612-abcfe9d8fddf
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

time_series_1 = TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts

time_series_2 = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817687665616
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

timestamps = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
timestamps_array = array([0.00000000e+00, 6.66671111e-06, 1.33334222e-05, ...,
       9.99986667e-01, 9.99993333e-01, 1.00000000e+00])
timestamps_configuration_1 = ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
timestamps_iterator_options = {'buffer_size': 30000}
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_time_series_timestamps_li5')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py:159: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries2/data': ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries2/timestamps': ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/data': ZarrDatasetIOConfiguration(object_id='6845cf33-68c7-45b5-adea-ae10bb92ae4e', location_in_file='acquisition/TestTimeSeries1/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None), 'acquisition/TestTimeSeries1/timestamps': ZarrDatasetIOConfiguration(object_id='6845cf33-68c7-45b5-adea-ae10bb92ae4e', location_in_file='acquisition/TestTimeSeries1/timestamps', dataset_name='timestamps', dtype=dtype('float64'), full_shape=(150000,), chunk_shape=(150000,), buffer_shape=(150000,), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='db544803-9797-47ca-b6bf-ff9d2027da9a', location_in_file='acquisition/TestTimeSeries2/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(44070, 113), buffer_shape=(150000, 384), compression_method='gzip', compression_options=None, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817687664720
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 515913, tzinfo=tzlocal())]
  identifier: 90461a86-307c-4a5d-a612-abcfe9d8fddf
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817687665616
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

        nwbfile_objects = {'6845cf33-68c7-45b5-adea-ae10bb92ae4e': TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts
,
 '71881984-b922-4e93-8eea-66d6dbb2af08': root pynwb.file.NWBFile at 0x139817687664720
Fields:
  acquisition: {
    TestTimeSeries1 <class 'pynwb.base.TimeSeries'>,
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 515913, tzinfo=tzlocal())]
  identifier: 90461a86-307c-4a5d-a612-abcfe9d8fddf
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'db544803-9797-47ca-b6bf-ff9d2027da9a': TestTimeSeries2 pynwb.base.TimeSeries at 0x139817687665616
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts
}
        object_id  = 'db544803-9797-47ca-b6bf-ff9d2027da9a'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
        self       = TestTimeSeries2 pynwb.base.TimeSeries at 0x139817687665616
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamps: TestTimeSeries1 pynwb.base.TimeSeries at 0x139817687673296
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b72d0>
  description: no description
  interval: 1
  offset: 0.0
  resolution: -1.0
  timestamp_link: (
    TestTimeSeries2 <class 'pynwb.base.TimeSeries'>
  )
  timestamps: <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b7590>
  timestamps_unit: seconds
  unit: volts

  timestamps_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d79b6c10>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d79b6c10>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>, 'data_io_kwargs': {'chunks': (44070, 113), 'compressor': GZip(level=1), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d79b6c10>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>,
 'data_io_kwargs': {'chunks': (44070, 113),
                    'compressor': GZip(level=1),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d79b6e10>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_______________________________ test_simple_time_series_override[hdf5-unwrapped-<lambda>-iterator_options0] ________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri0')
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da633ec0>, iterator_options = {}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='cedbc68f-fdc2-44c7-98f6-5eea02db404e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
case_name  = 'unwrapped'
data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
dataset_configuration = HDF5DatasetIOConfiguration(object_id='cedbc68f-fdc2-44c7-98f6-5eea02db404e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
higher_gzip_level = 5
iterator   = <function <lambda> at 0x7f29da633ec0>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817680951696
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 567697, tzinfo=tzlocal())]
  identifier: aa93e003-34f4-4cd3-8484-a689226aedfb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817680950992
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='cedbc68f-fdc2-44c7-98f6-5eea02db404e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='cedbc68f-fdc2-44c7-98f6-5eea02db404e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817680951696
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 567697, tzinfo=tzlocal())]
  identifier: aa93e003-34f4-4cd3-8484-a689226aedfb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817680950992
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'738bebea-1efe-44d6-8a7c-0c2449cbc0d3': root pynwb.file.NWBFile at 0x139817680951696
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 567697, tzinfo=tzlocal())]
  identifier: aa93e003-34f4-4cd3-8484-a689226aedfb
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'cedbc68f-fdc2-44c7-98f6-5eea02db404e': TestTimeSeries pynwb.base.TimeSeries at 0x139817680950992
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'cedbc68f-fdc2-44c7-98f6-5eea02db404e'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817680950992
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d734c910>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d734c910>,)
kwargs = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
 ... ..., 0, 0, 0]], dtype=int16), 'data_io_kwargs': {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d734c910>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_______________________ test_simple_time_series_override[hdf5-generic-SliceableDataChunkIterator-iterator_options1] ________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri1')
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, iterator_options = {}, backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='e9064187-779d-4d4c-a268-adc99c385a3e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
case_name  = 'generic'
data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
dataset_configuration = HDF5DatasetIOConfiguration(object_id='e9064187-779d-4d4c-a268-adc99c385a3e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
higher_gzip_level = 5
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817681975824
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 710861, tzinfo=tzlocal())]
  identifier: c952216b-4f24-4705-964d-355f9201874b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817681962064
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri1')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='e9064187-779d-4d4c-a268-adc99c385a3e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='e9064187-779d-4d4c-a268-adc99c385a3e', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817681975824
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 710861, tzinfo=tzlocal())]
  identifier: c952216b-4f24-4705-964d-355f9201874b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817681962064
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'0f387481-0e6c-4d70-b84d-3088dc22165a': root pynwb.file.NWBFile at 0x139817681975824
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 50, 710861, tzinfo=tzlocal())]
  identifier: c952216b-4f24-4705-964d-355f9201874b
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'e9064187-779d-4d4c-a268-adc99c385a3e': TestTimeSeries pynwb.base.TimeSeries at 0x139817681962064
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'e9064187-779d-4d4c-a268-adc99c385a3e'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817681962064
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7445a10>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7445a10>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>, 'data_io_kwargs': {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d7445a10>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7447490>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
____________________________ test_simple_time_series_override[hdf5-classic-DataChunkIterator-iterator_options2] ____________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri2')
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>, iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
backend = 'hdf5'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='5aa05223-5f7e-4fda-98cc-b0c2744ec881', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
case_name  = 'classic'
data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
dataset_configuration = HDF5DatasetIOConfiguration(object_id='5aa05223-5f7e-4fda-98cc-b0c2744ec881', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
higher_gzip_level = 5
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
nwbfile    = root pynwb.file.NWBFile at 0x139817680870992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 219425, tzinfo=tzlocal())]
  identifier: 3d04b1a0-dee4-4739-8296-68841f6afdc4
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817680869520
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri2')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': HDF5DatasetIOConfiguration(object_id='5aa05223-5f7e-4fda-98cc-b0c2744ec881', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})})
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}
        dataset_configuration = HDF5DatasetIOConfiguration(object_id='5aa05223-5f7e-4fda-98cc-b0c2744ec881', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5})
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817680870992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 219425, tzinfo=tzlocal())]
  identifier: 3d04b1a0-dee4-4739-8296-68841f6afdc4
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817680869520
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'3f195628-af98-4c98-8982-34a0697eb51d': root pynwb.file.NWBFile at 0x139817680870992
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 219425, tzinfo=tzlocal())]
  identifier: 3d04b1a0-dee4-4739-8296-68841f6afdc4
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 '5aa05223-5f7e-4fda-98cc-b0c2744ec881': TestTimeSeries pynwb.base.TimeSeries at 0x139817680869520
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = '5aa05223-5f7e-4fda-98cc-b0c2744ec881'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
        data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817680869520
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29dc9f9bc0>
        args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d733b950>,)
        func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d733b950>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>, 'data_io_kwargs': {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf.backends.hdf5.h5_utils.H5DataIO object at 0x7f29d733b950>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function H5DataIO.__init__ at 0x7f29dc9f9b20>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compression': 'gzip',
                    'compression_opts': 5}}
loc_val    = [{'default': None,
  'doc': 'the data to be written. NOTE: If an h5py.Dataset is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in H5DataIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'h5py._hl.dataset.Dataset'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Dataset will be resizable up to this shape (Tuple). Automatically '
         'enables chunking.Use None for the axes you want to be unlimited.',
  'name': 'maxshape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'Chunk shape or True to enable auto-chunking',
  'name': 'chunks',
  'type': (<class 'bool'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Compression strategy. If a bool is given, then gzip compression will '
         'be used by '
         'default.http://docs.h5py.org/en/latest/high/dataset.html#dataset-compression',
  'name': 'compression',
  'type': (<class 'str'>, <class 'bool'>, <class 'int'>)},
 {'default': None,
  'doc': 'Parameter for compression filter',
  'name': 'compression_opts',
  'type': (<class 'int'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Enable shuffle I/O filter. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-shuffle',
  'name': 'shuffle',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'Enable fletcher32 checksum. '
         'http://docs.h5py.org/en/latest/high/dataset.html#dataset-fletcher32',
  'name': 'fletcher32',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'If data is an h5py.Dataset should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an h5py.Dataset',
  'name': 'link_data',
  'type': <class 'bool'>},
 {'default': False,
  'doc': 'Enable passing dynamically loaded filters as compression parameter',
  'name': 'allow_plugin_filters',
  'type': <class 'bool'>},
 {'default': None,
  'doc': 'the shape of the new dataset, used only if data is None',
  'name': 'shape',
  'type': <class 'tuple'>},
 {'default': None,
  'doc': 'the data type of the new dataset, used only if data is None',
  'name': 'dtype',
  'type': (<class 'str'>, <class 'type'>, <class 'numpy.dtype'>)}]
msg        = "H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'allow_plugin_filters': False,
          'chunks': None,
          'compression': None,
          'compression_opts': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d7339150>,
          'dtype': None,
          'fillvalue': None,
          'fletcher32': None,
          'link_data': False,
          'maxshape': None,
          'shape': None,
          'shuffle': None},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_______________________________ test_simple_time_series_override[zarr-unwrapped-<lambda>-iterator_options0] ________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri3')
case_name = 'unwrapped', iterator = <function <lambda> at 0x7f29da633ec0>, iterator_options = {}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='e56f6aa9-5852-40a1-9110-1dd94b3eaa25', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'unwrapped'
data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
dataset_configuration = ZarrDatasetIOConfiguration(object_id='e56f6aa9-5852-40a1-9110-1dd94b3eaa25', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
higher_gzip_level = 5
iterator   = <function <lambda> at 0x7f29da633ec0>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817681021328
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 264337, tzinfo=tzlocal())]
  identifier: ca042321-6f84-4af5-98c0-281e606cc8a7
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817681016656
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri3')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='e56f6aa9-5852-40a1-9110-1dd94b3eaa25', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='e56f6aa9-5852-40a1-9110-1dd94b3eaa25', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817681021328
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 264337, tzinfo=tzlocal())]
  identifier: ca042321-6f84-4af5-98c0-281e606cc8a7
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817681016656
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'56610b1d-35b5-437b-8bcc-bdb2b74b91a7': root pynwb.file.NWBFile at 0x139817681021328
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 264337, tzinfo=tzlocal())]
  identifier: ca042321-6f84-4af5-98c0-281e606cc8a7
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'e56f6aa9-5852-40a1-9110-1dd94b3eaa25': TestTimeSeries pynwb.base.TimeSeries at 0x139817681016656
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'e56f6aa9-5852-40a1-9110-1dd94b3eaa25'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817681016656
Fields:
  comments: no comments
  conversion: 1.0
  data: [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d735d110>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d735d110>,)
kwargs = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
 ... ..., 0, 0, 0]], dtype=int16), 'data_io_kwargs': {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d735d110>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16),
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_______________________ test_simple_time_series_override[zarr-generic-SliceableDataChunkIterator-iterator_options1] ________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri4')
case_name = 'generic', iterator = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>, iterator_options = {}, backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='b355023b-7f04-41d0-9ddd-42e407f6b7aa', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'generic'
data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
dataset_configuration = ZarrDatasetIOConfiguration(object_id='b355023b-7f04-41d0-9ddd-42e407f6b7aa', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
higher_gzip_level = 5
iterator   = <class 'neuroconv.tools.hdmf.SliceableDataChunkIterator'>
iterator_options = {}
nwbfile    = root pynwb.file.NWBFile at 0x139817680719312
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 312123, tzinfo=tzlocal())]
  identifier: 3003f17c-0ff7-4fb6-938b-b99740aabe00
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817680729296
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri4')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='b355023b-7f04-41d0-9ddd-42e407f6b7aa', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='b355023b-7f04-41d0-9ddd-42e407f6b7aa', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817680719312
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 312123, tzinfo=tzlocal())]
  identifier: 3003f17c-0ff7-4fb6-938b-b99740aabe00
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817680729296
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'9e197a7d-c11e-4430-8e7e-57b69457b58f': root pynwb.file.NWBFile at 0x139817680719312
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 312123, tzinfo=tzlocal())]
  identifier: 3003f17c-0ff7-4fb6-938b-b99740aabe00
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'b355023b-7f04-41d0-9ddd-42e407f6b7aa': TestTimeSeries pynwb.base.TimeSeries at 0x139817680729296
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'b355023b-7f04-41d0-9ddd-42e407f6b7aa'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817680729296
Fields:
  comments: no comments
  conversion: 1.0
  data: <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7316350>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7316350>,)
kwargs = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>, 'data_io_kwargs': {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d7316350>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <neuroconv.tools.hdmf.SliceableDataChunkIterator object at 0x7f29d7314950>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
____________________________ test_simple_time_series_override[zarr-classic-DataChunkIterator-iterator_options2] ____________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri5')
case_name = 'classic', iterator = <class 'hdmf.data_utils.DataChunkIterator'>, iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
backend = 'zarr'

    @pytest.mark.parametrize(
        "case_name,iterator,iterator_options",
        [
            ("unwrapped", lambda x: x, dict()),
            ("generic", SliceableDataChunkIterator, dict()),
            ("classic", DataChunkIterator, dict(iter_axis=1, buffer_size=30_000 * 5)),
            # Need to hardcode buffer size in classic case or else it takes forever...
        ],
    )
    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_time_series_override(
        tmpdir: Path, case_name: str, iterator: callable, iterator_options: dict, backend: Literal["hdf5", "zarr"]
    ):
        array = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
        data = iterator(array, **iterator_options)
    
        nwbfile = mock_NWBFile()
        time_series = mock_TimeSeries(name="TestTimeSeries", data=data)
        nwbfile.add_acquisition(time_series)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestTimeSeries/data"]
    
        smaller_chunk_shape = (30_000, 64)
        smaller_buffer_shape = (60_000, 192)
        dataset_configuration.chunk_shape = smaller_chunk_shape
        dataset_configuration.buffer_shape = smaller_buffer_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

array      = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='eb35d47e-2271-4205-8c3e-81d3748ccf94', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
case_name  = 'classic'
data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
dataset_configuration = ZarrDatasetIOConfiguration(object_id='eb35d47e-2271-4205-8c3e-81d3748ccf94', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
higher_gzip_level = 5
iterator   = <class 'hdmf.data_utils.DataChunkIterator'>
iterator_options = {'buffer_size': 150000, 'iter_axis': 1}
nwbfile    = root pynwb.file.NWBFile at 0x139817685080784
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 907194, tzinfo=tzlocal())]
  identifier: bb9a9565-bfd0-4ef3-aa8a-9a4740fd9d9e
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_buffer_shape = (60000, 192)
smaller_chunk_shape = (30000, 64)
time_series = TestTimeSeries pynwb.base.TimeSeries at 0x139817685077456
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_time_series_overri5')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:56: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:33: in configure_backend
    nwbfile_object.set_data_io(
        backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestTimeSeries/data': ZarrDatasetIOConfiguration(object_id='eb35d47e-2271-4205-8c3e-81d3748ccf94', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        data_io_kwargs = {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}
        dataset_configuration = ZarrDatasetIOConfiguration(object_id='eb35d47e-2271-4205-8c3e-81d3748ccf94', location_in_file='acquisition/TestTimeSeries/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(60000, 192), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
        dataset_name = 'data'
        is_dataset_linked = False
        nwbfile    = root pynwb.file.NWBFile at 0x139817685080784
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 907194, tzinfo=tzlocal())]
  identifier: bb9a9565-bfd0-4ef3-aa8a-9a4740fd9d9e
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

        nwbfile_object = TestTimeSeries pynwb.base.TimeSeries at 0x139817685077456
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

        nwbfile_objects = {'74e98dbb-dd27-40ce-8430-1b294a6b0938': root pynwb.file.NWBFile at 0x139817685080784
Fields:
  acquisition: {
    TestTimeSeries <class 'pynwb.base.TimeSeries'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 907194, tzinfo=tzlocal())]
  identifier: bb9a9565-bfd0-4ef3-aa8a-9a4740fd9d9e
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 'eb35d47e-2271-4205-8c3e-81d3748ccf94': TestTimeSeries pynwb.base.TimeSeries at 0x139817685077456
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts
}
        object_id  = 'eb35d47e-2271-4205-8c3e-81d3748ccf94'
/usr/lib/python3.11/site-packages/hdmf/container.py:746: in set_data_io
    self.fields[dataset_name] = data_io_class(data=data, **kwargs)
        data       = <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
        data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
        dataset_name = 'data'
        kwargs     = {'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
        self       = TestTimeSeries pynwb.base.TimeSeries at 0x139817685077456
Fields:
  comments: no comments
  conversion: 1.0
  data: <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>
  description: no description
  offset: 0.0
  rate: 10.0
  resolution: -1.0
  starting_time: 0.0
  starting_time_unit: seconds
  unit: volts

/usr/lib/python3.11/site-packages/hdmf/utils.py:663: in func_call
    pargs = _check_args(args, kwargs)
        _check_args = <function docval.<locals>.dec.<locals>._check_args at 0x7f29db1577e0>
        args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d773e0d0>,)
        func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
        kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

args = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d773e0d0>,)
kwargs = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>, 'data_io_kwargs': {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}}

    def _check_args(args, kwargs):
        """Parse and check arguments to decorated function. Raise warnings and errors as appropriate."""
        # this function was separated from func_call() in order to make stepping through lines of code using pdb
        # easier
    
        parsed = __parse_args(
            loc_val,
            args[1:] if is_method else args,
            kwargs,
            enforce_type=enforce_type,
            enforce_shape=enforce_shape,
            allow_extra=allow_extra,
            allow_positional=allow_positional
        )
    
        parse_warnings = parsed.get('future_warnings')
        if parse_warnings:
            msg = '%s: %s' % (func.__qualname__, ', '.join(parse_warnings))
            warnings.warn(msg, FutureWarning)
    
        for error_type, ExceptionType in (('type_errors', TypeError),
                                          ('value_errors', ValueError),
                                          ('syntax_errors', SyntaxError)):
            parse_err = parsed.get(error_type)
            if parse_err:
                msg = '%s: %s' % (func.__qualname__, ', '.join(parse_err))
>               raise ExceptionType(msg)
E               TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'

ExceptionType = <class 'TypeError'>
allow_extra = False
allow_positional = True
args       = (<hdmf_zarr.utils.ZarrDataIO object at 0x7f29d773e0d0>,)
enforce_shape = True
enforce_type = True
error_type = 'type_errors'
func       = <function ZarrDataIO.__init__ at 0x7f29db157740>
is_method  = True
kwargs     = {'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>,
 'data_io_kwargs': {'chunks': (30000, 64),
                    'compressor': GZip(level=5),
                    'filters': None}}
loc_val    = [{'doc': 'the data to be written. NOTE: If an zarr.Array is used, all other '
         'settings but link_data will be ignored as the dataset will either be '
         'linked to or copied as is in ZarrIO.',
  'name': 'data',
  'type': (<class 'numpy.ndarray'>,
           <class 'list'>,
           <class 'tuple'>,
           <class 'zarr.core.Array'>,
           <class 'collections.abc.Iterable'>)},
 {'default': None,
  'doc': 'Chunk shape',
  'name': 'chunks',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': None,
  'doc': 'Value to be returned when reading uninitialized parts of the dataset',
  'name': 'fillvalue',
  'type': None},
 {'default': None,
  'doc': 'Zarr compressor filter to be used. Set to True to use Zarr '
         'default.Set to False to disable compression)',
  'name': 'compressor',
  'type': (<class 'numcodecs.abc.Codec'>, <class 'bool'>)},
 {'default': None,
  'doc': 'One or more Zarr-supported codecs used to transform data prior to '
         'compression.',
  'name': 'filters',
  'type': (<class 'list'>, <class 'tuple'>)},
 {'default': False,
  'doc': 'If data is an zarr.Array should it be linked to or copied. NOTE: '
         'This parameter is only allowed if data is an zarr.Array',
  'name': 'link_data',
  'type': <class 'bool'>}]
msg        = "ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'"
parse_err  = ["unrecognized argument: 'data_io_kwargs'"]
parse_warnings = []
parsed     = {'args': {'chunks': None,
          'compressor': None,
          'data': <hdmf.data_utils.DataChunkIterator object at 0x7f29d773cd90>,
          'fillvalue': None,
          'filters': None,
          'link_data': False},
 'future_warnings': [],
 'syntax_errors': [],
 'type_errors': ["unrecognized argument: 'data_io_kwargs'"],
 'value_errors': []}

/usr/lib/python3.11/site-packages/hdmf/utils.py:656: TypeError
_________________________________________________ test_simple_dynamic_table_override[hdf5] _________________________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_over0')
backend = 'hdf5'

    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_dynamic_table_override(tmpdir: Path, backend: Literal["hdf5", "zarr"]):
        data = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
    
        nwbfile = mock_NWBFile()
        dynamic_table = DynamicTable(
            name="TestDynamicTable", description="", columns=[VectorData(name="TestColumn", description="", data=data)]
        )
        nwbfile.add_acquisition(dynamic_table)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestDynamicTable/TestColumn/data"]
    
        smaller_chunk_shape = (30_000, 64)
        dataset_configuration.chunk_shape = smaller_chunk_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'hdf5'
backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfiguration(object_id='b623fca4-8991-48df-9964-245c4cd73380', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5})})
data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
dataset_configuration = HDF5DatasetIOConfiguration(object_id='b623fca4-8991-48df-9964-245c4cd73380', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5})
dynamic_table = TestDynamicTable hdmf.common.table.DynamicTable at 0x139817687725776
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>

higher_gzip_level = 5
nwbfile    = root pynwb.file.NWBFile at 0x139817687722576
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 950250, tzinfo=tzlocal())]
  identifier: 8d3b70dc-153a-4856-8656-88724abf83ea
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_chunk_shape = (30000, 64)
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_over0')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:100: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

nwbfile = root pynwb.file.NWBFile at 0x139817687722576
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.D...ion_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfigur...4), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5})})

    def configure_backend(
        nwbfile: NWBFile, backend_configuration: Union[HDF5BackendConfiguration, ZarrBackendConfiguration]
    ) -> None:
        """Configure all datasets specified in the `backend_configuration` with their appropriate DataIO and options."""
        nwbfile_objects = nwbfile.objects
    
        data_io_class = backend_configuration.data_io_class
        for dataset_configuration in backend_configuration.dataset_configurations.values():
            object_id = dataset_configuration.object_id
            dataset_name = dataset_configuration.dataset_name
            data_io_kwargs = dataset_configuration.get_data_io_kwargs()
    
            # TODO: update buffer shape in iterator, if present
    
            nwbfile_object = nwbfile_objects[object_id]
            is_dataset_linked = isinstance(nwbfile_object.fields.get(dataset_name), TimeSeries)
            # Table columns
            if isinstance(nwbfile_object, Data):
>               nwbfile_object.set_data_io(data_io_class=data_io_class, data_io_kwargs=data_io_kwargs)
E               AttributeError: 'VectorData' object has no attribute 'set_data_io'

backend_configuration = HDF5BackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': HDF5DatasetIOConfiguration(object_id='b623fca4-8991-48df-9964-245c4cd73380', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5})})
data_io_class = <class 'hdmf.backends.hdf5.h5_utils.H5DataIO'>
data_io_kwargs = {'chunks': (30000, 64), 'compression': 'gzip', 'compression_opts': 5}
dataset_configuration = HDF5DatasetIOConfiguration(object_id='b623fca4-8991-48df-9964-245c4cd73380', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5})
dataset_name = 'data'
is_dataset_linked = False
nwbfile    = root pynwb.file.NWBFile at 0x139817687722576
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 950250, tzinfo=tzlocal())]
  identifier: 8d3b70dc-153a-4856-8656-88724abf83ea
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

nwbfile_object = <hdmf.common.table.VectorData object at 0x7f29d79c3e50>
nwbfile_objects = {'246021d9-18f3-46ba-aea1-927fca00c809': root pynwb.file.NWBFile at 0x139817687722576
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 950250, tzinfo=tzlocal())]
  identifier: 8d3b70dc-153a-4856-8656-88724abf83ea
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 '4225e8ec-ef75-4ad0-a437-68e8f1a0112b': <hdmf.common.table.ElementIdentifiers object at 0x7f29d79c3f50>,
 'b623fca4-8991-48df-9964-245c4cd73380': <hdmf.common.table.VectorData object at 0x7f29d79c3e50>,
 'd724484d-96c4-4cb1-b84a-418a268efa3e': TestDynamicTable hdmf.common.table.DynamicTable at 0x139817687725776
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>
}
object_id  = 'b623fca4-8991-48df-9964-245c4cd73380'

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:30: AttributeError
_________________________________________________ test_simple_dynamic_table_override[zarr] _________________________________________________

tmpdir = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_over1')
backend = 'zarr'

    @pytest.mark.parametrize("backend", ["hdf5", "zarr"])
    def test_simple_dynamic_table_override(tmpdir: Path, backend: Literal["hdf5", "zarr"]):
        data = np.zeros(shape=(30_000 * 5, 384), dtype="int16")
    
        nwbfile = mock_NWBFile()
        dynamic_table = DynamicTable(
            name="TestDynamicTable", description="", columns=[VectorData(name="TestColumn", description="", data=data)]
        )
        nwbfile.add_acquisition(dynamic_table)
    
        backend_configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend)
        dataset_configuration = backend_configuration.dataset_configurations["acquisition/TestDynamicTable/TestColumn/data"]
    
        smaller_chunk_shape = (30_000, 64)
        dataset_configuration.chunk_shape = smaller_chunk_shape
    
        higher_gzip_level = 5
        if backend == "hdf5":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
        elif backend == "zarr":
            dataset_configuration.compression_options = dict(level=higher_gzip_level)
    
>       configure_backend(nwbfile=nwbfile, backend_configuration=backend_configuration)

backend    = 'zarr'
backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfiguration(object_id='14a226c7-4013-4caf-9d2b-1f5774e8cb5b', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
data       = array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int16)
dataset_configuration = ZarrDatasetIOConfiguration(object_id='14a226c7-4013-4caf-9d2b-1f5774e8cb5b', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
dynamic_table = TestDynamicTable hdmf.common.table.DynamicTable at 0x139817687719760
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>

higher_gzip_level = 5
nwbfile    = root pynwb.file.NWBFile at 0x139817687713296
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 961078, tzinfo=tzlocal())]
  identifier: efbc60b2-465c-46f1-a36f-0922b35aeb7c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

smaller_chunk_shape = (30000, 64)
tmpdir     = local('/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/pytest-of-portage/pytest-0/test_simple_dynamic_table_over1')

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py:100: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

nwbfile = root pynwb.file.NWBFile at 0x139817687713296
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.D...ion_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfigur...ression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)

    def configure_backend(
        nwbfile: NWBFile, backend_configuration: Union[HDF5BackendConfiguration, ZarrBackendConfiguration]
    ) -> None:
        """Configure all datasets specified in the `backend_configuration` with their appropriate DataIO and options."""
        nwbfile_objects = nwbfile.objects
    
        data_io_class = backend_configuration.data_io_class
        for dataset_configuration in backend_configuration.dataset_configurations.values():
            object_id = dataset_configuration.object_id
            dataset_name = dataset_configuration.dataset_name
            data_io_kwargs = dataset_configuration.get_data_io_kwargs()
    
            # TODO: update buffer shape in iterator, if present
    
            nwbfile_object = nwbfile_objects[object_id]
            is_dataset_linked = isinstance(nwbfile_object.fields.get(dataset_name), TimeSeries)
            # Table columns
            if isinstance(nwbfile_object, Data):
>               nwbfile_object.set_data_io(data_io_class=data_io_class, data_io_kwargs=data_io_kwargs)
E               AttributeError: 'VectorData' object has no attribute 'set_data_io'

backend_configuration = ZarrBackendConfiguration(dataset_configurations={'acquisition/TestDynamicTable/TestColumn/data': ZarrDatasetIOConfiguration(object_id='14a226c7-4013-4caf-9d2b-1f5774e8cb5b', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)}, number_of_jobs=11)
data_io_class = <class 'hdmf_zarr.utils.ZarrDataIO'>
data_io_kwargs = {'chunks': (30000, 64), 'compressor': GZip(level=5), 'filters': None}
dataset_configuration = ZarrDatasetIOConfiguration(object_id='14a226c7-4013-4caf-9d2b-1f5774e8cb5b', location_in_file='acquisition/TestDynamicTable/TestColumn/data', dataset_name='data', dtype=dtype('int16'), full_shape=(150000, 384), chunk_shape=(30000, 64), buffer_shape=(150000, 384), compression_method='gzip', compression_options={'level': 5}, filter_methods=None, filter_options=None)
dataset_name = 'data'
is_dataset_linked = False
nwbfile    = root pynwb.file.NWBFile at 0x139817687713296
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 961078, tzinfo=tzlocal())]
  identifier: efbc60b2-465c-46f1-a36f-0922b35aeb7c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00

nwbfile_object = <hdmf.common.table.VectorData object at 0x7f29d79c0c10>
nwbfile_objects = {'14a226c7-4013-4caf-9d2b-1f5774e8cb5b': <hdmf.common.table.VectorData object at 0x7f29d79c0c10>,
 '19a12062-bddf-43ed-894d-b3535dee0adf': root pynwb.file.NWBFile at 0x139817687713296
Fields:
  acquisition: {
    TestDynamicTable <class 'hdmf.common.table.DynamicTable'>
  }
  file_create_date: [datetime.datetime(2024, 3, 21, 12, 56, 51, 961078, tzinfo=tzlocal())]
  identifier: efbc60b2-465c-46f1-a36f-0922b35aeb7c
  session_description: session_description
  session_start_time: 1970-01-01 00:00:00-05:00
  timestamps_reference_time: 1970-01-01 00:00:00-05:00
,
 '45fa3b1d-a286-4456-80ae-e2726dedf8a8': <hdmf.common.table.ElementIdentifiers object at 0x7f29d776f050>,
 'ff883a7c-ffe7-4ac5-a473-f66b1a2d4062': TestDynamicTable hdmf.common.table.DynamicTable at 0x139817687719760
Fields:
  colnames: ['TestColumn']
  columns: (
    TestColumn <class 'hdmf.common.table.VectorData'>
  )
  id: id <class 'hdmf.common.table.ElementIdentifiers'>
}
object_id  = '14a226c7-4013-4caf-9d2b-1f5774e8cb5b'

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/nwb_helpers/_configure_backend.py:30: AttributeError
_______________________________________ TestMockRecordingInterface.test_conversion_as_lone_interface _______________________________________

self = <test_mock_recording_interface.TestMockRecordingInterface testMethod=test_conversion_as_lone_interface>

    def test_conversion_as_lone_interface(self):
        interface_kwargs = self.interface_kwargs
        if isinstance(interface_kwargs, dict):
            interface_kwargs = [interface_kwargs]
        for num, kwargs in enumerate(interface_kwargs):
            with self.subTest(str(num)):
                self.case = num
                self.test_kwargs = kwargs
                self.interface = self.data_interface_cls(**self.test_kwargs)
                assert isinstance(self.interface, BaseRecordingExtractorInterface)
                if not self.interface.has_probe():
                    self.interface.set_probe(
                        generate_mock_probe(num_channels=self.interface.recording_extractor.get_num_channels()),
                        group_mode="by_shank",
                    )
    
                self.check_metadata_schema_valid()
                self.check_conversion_options_schema_valid()
                self.check_metadata()
                self.nwbfile_path = str(self.save_directory / f"{self.__class__.__name__}_{num}.nwb")
                self.run_conversion(nwbfile_path=self.nwbfile_path)
>               self.check_read_nwb(nwbfile_path=self.nwbfile_path)

interface_kwargs = [{'durations': [0.1]}]
kwargs     = {'durations': [0.1]}
num        = 0
self       = <test_mock_recording_interface.TestMockRecordingInterface testMethod=test_conversion_as_lone_interface>

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/testing/data_interface_mixins.py:518: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <test_mock_recording_interface.TestMockRecordingInterface testMethod=test_conversion_as_lone_interface>
nwbfile_path = '/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/tmpl6m4noal/TestMockRecordingInterface_0.nwb'

    def check_read_nwb(self, nwbfile_path: str):
        from spikeinterface.extractors import NwbRecordingExtractor
    
        recording = self.interface.recording_extractor
    
        electrical_series_name = self.interface.get_metadata()["Ecephys"][self.interface.es_key]["name"]
    
        if recording.get_num_segments() == 1:
    
            # Spikeinterface behavior is to load the electrode table channel_name property as a channel_id
            self.nwb_recording = NwbRecordingExtractor(
                file_path=nwbfile_path, electrical_series_name=electrical_series_name
            )
    
            # Set channel_ids right for comparison
            # Neuroconv ALWAYS writes a string property `channel_name`` to the electrode table.
            # And the NwbRecordingExtractor always uses `channel_name` property as the channel_ids
            # `check_recordings_equal` compares ids so we need to rename the channels or the original recordings
            # So they match
            properties_in_the_recording = recording.get_property_keys()
            if "channel_name" in properties_in_the_recording:
                channel_name = recording.get_property("channel_name").astype("str", copy=False)
            else:
                channel_name = recording.get_channel_ids().astype("str", copy=False)
    
>           recording = recording.rename_channels(new_channel_ids=channel_name)
E           AttributeError: 'NoiseGeneratorRecording' object has no attribute 'rename_channels'

NwbRecordingExtractor = <class 'spikeinterface.extractors.nwbextractors.NwbRecordingExtractor'>
channel_name = array(['0', '1', '2', '3'], dtype='<U21')
electrical_series_name = 'ElectricalSeries'
nwbfile_path = '/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/tmpl6m4noal/TestMockRecordingInterface_0.nwb'
properties_in_the_recording = ['contact_vector', 'location', 'group']
recording  = NoiseGeneratorRecording: 4 channels - 30.0kHz - 1 segments - 3,000 samples - 0.10s (100.00 ms) 
                         float32 dtype - 46.88 KiB
self       = <test_mock_recording_interface.TestMockRecordingInterface testMethod=test_conversion_as_lone_interface>

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/testing/data_interface_mixins.py:307: AttributeError
----------------------------------------------------------- Captured stdout call -----------------------------------------------------------
NWB file saved at /var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/tmpl6m4noal/TestMockRecordingInterface_0.nwb!
============================================================= warnings summary =============================================================
../../../../../../../usr/lib/python3.11/site-packages/hdmf/container.py:10
  /usr/lib/python3.11/site-packages/hdmf/container.py:10: DeprecationWarning: 
  Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
  (to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
  but was not found to be installed on your system.
  If this would cause problems for you,
  please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
          
    import pandas as pd

../neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/yaml_conversion_specification/_yaml_conversion_specification.py:7
  /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/yaml_conversion_specification/_yaml_conversion_specification.py:7: DeprecationWarning: jsonschema.RefResolver is deprecated as of v4.18.0, in favor of the https://github.com/python-jsonschema/referencing library, which provides more compliant referencing behavior as well as more flexible APIs for customization. A future release will remove RefResolver. Please file a feature request (on referencing) if you are missing an API for the kind of customization you need.
    from jsonschema import RefResolver, validate

tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_baseline_mean_int_dtype_float_assertion
  /usr/lib/python3.11/site-packages/hdmf/spec/namespace.py:531: UserWarning: Ignoring cached namespace 'hdmf-common' version 1.5.1 because version 1.8.0 is already loaded.
    warn("Ignoring cached namespace '%s' version %s because version %s is already loaded."

tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_baseline_mean_int_dtype_float_assertion
  /usr/lib/python3.11/site-packages/hdmf/spec/namespace.py:531: UserWarning: Ignoring cached namespace 'core' version 2.5.0 because version 2.6.0-alpha is already loaded.
    warn("Ignoring cached namespace '%s' version %s because version %s is already loaded."

tests/test_minimal/test_testing/test_mocks/test_mock_ttl.py::TestMockTTLSignals::test_baseline_mean_int_dtype_float_assertion
  /usr/lib/python3.11/site-packages/hdmf/spec/namespace.py:531: UserWarning: Ignoring cached namespace 'hdmf-experimental' version 0.2.0 because version 0.5.0 is already loaded.
    warn("Ignoring cached namespace '%s' version %s because version %s is already loaded."

tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_external_image_series[hdf5]
tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py::test_configuration_on_external_image_series[zarr]
  /usr/lib/python3.11/site-packages/pynwb/image.py:97: DeprecationWarning: ImageSeries 'TestImageSeries': The value for 'format' has been changed to 'external'. Setting a default value for 'format' is deprecated and will be changed to raising a ValueError in the next major release.
    warnings.warn(

tests/test_ecephys/test_ecephys_interfaces.py::TestRecordingInterface::test_stub_multi_segment
tests/test_ecephys/test_ecephys_interfaces.py::TestRecordingInterface::test_stub_single_segment
tests/test_ecephys/test_mock_nidq_interface.py::TestMockSpikeGLXNIDQInterface::test_mock_run_conversion
  /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/basedatainterface.py:97: UserWarning: Using DataInterface.run_conversion without specifying nwbfile_path is deprecated. To create an NWBFile object in memory, use DataInterface.create_nwbfile. To append to an existing NWBFile object, use DataInterface.add_to_nwbfile.
    warnings.warn(  # TODO: remove on or after 6/21/2024

tests/test_ecephys/test_mock_recording_interface.py::TestMockRecordingInterface::test_interface_alignment
  /usr/lib/python3.11/site-packages/spikeinterface/core/baserecording.py:418: UserWarning: Setting times with Recording.set_times() is not recommended because times are not always propagated across preprocessingUse this carefully!
    warn(

tests/test_ecephys/test_tools_spikeinterface.py: 23 warnings
  /var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8-python3_11/install/usr/lib/python3.11/site-packages/neuroconv/tools/spikeinterface/spikeinterface.py:121: UserWarning: When adding ElectrodeGroup, no Devices were found on nwbfile. Creating a Device now...
    warnings.warn("When adding ElectrodeGroup, no Devices were found on nwbfile. Creating a Device now...")

tests/test_ecephys/test_tools_spikeinterface.py::TestAddElectricalSeriesWriting::test_write_with_lzf_compression
  /usr/lib/python3.11/site-packages/hdmf/backends/hdf5/h5_utils.py:595: UserWarning: lzf compression may not be available on all installations of HDF5. Use of gzip is recommended to ensure portability of the generated HDF5 files.
    warnings.warn(str(self.__iosettings['compression']) + " compression may not be available "

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/core_tools.py:312: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpabgrn57b/KKBT236Z/traces_cached_seg0.raw' mode='r+' encoding='UTF-8'>
    executor.run()
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/baserecording.py:550: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpabgrn57b/KKBT236Z/traces_cached_seg0.raw' mode='r' encoding='UTF-8'>
    cached.set_probegroup(probegroup)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/base.py:864: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpabgrn57b/KKBT236Z/traces_cached_seg0.raw' mode='r' encoding='UTF-8'>
    cached = self._save(folder=folder, verbose=verbose, **save_kwargs)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/core_tools.py:312: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg0.raw' mode='r+' encoding='UTF-8'>
    executor.run()
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/core_tools.py:312: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg1.raw' mode='r+' encoding='UTF-8'>
    executor.run()
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/baserecording.py:550: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg1.raw' mode='r' encoding='UTF-8'>
    cached.set_probegroup(probegroup)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/baserecording.py:550: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg0.raw' mode='r' encoding='UTF-8'>
    cached.set_probegroup(probegroup)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/base.py:864: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg1.raw' mode='r' encoding='UTF-8'>
    cached = self._save(folder=folder, verbose=verbose, **save_kwargs)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/core/base.py:864: ResourceWarning: unclosed file <_io.TextIOWrapper name='/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/spikeinterface_cache/tmpflnso311/9X3UFBPA/traces_cached_seg0.raw' mode='r' encoding='UTF-8'>
    cached = self._save(folder=folder, verbose=verbose, **save_kwargs)
  Enable tracemalloc to get traceback where the object was allocated.
  See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/qualitymetrics/misc_metrics.py:142: UserWarning: Bin duration of 60s is larger than recording duration. Presence ratios are set to NaN.
    warnings.warn(

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/qualitymetrics/misc_metrics.py:842: UserWarning: Units [0, 1, 2, 3] have too few spikes and amplitude_cutoff is set to NaN
    warnings.warn(f"Units {nan_units} have too few spikes and " "amplitude_cutoff is set to NaN")

tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
tests/test_ecephys/test_tools_spikeinterface.py::TestWriteWaveforms::test_group_name_property
  /usr/lib/python3.11/site-packages/spikeinterface/qualitymetrics/misc_metrics.py:696: UserWarning: 
    warnings.warn("")

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
========================================================= short test summary info ==========================================================
SKIPPED [2] tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_get_default_dataset_io_configurations.py:235: The extra testing package 'ndx-events' is not installed!
SKIPPED [1] tests/test_ecephys/test_ecephys_interfaces.py:53: Only testing with Python 3.10!
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-unwrapped-<lambda>-iterator_options0] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-generic-SliceableDataChunkIterator-iterator_options1] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[hdf5-classic-DataChunkIterator-iterator_options2] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-unwrapped-<lambda>-iterator_options0] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-generic-SliceableDataChunkIterator-iterator_options1] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_time_series[zarr-classic-DataChunkIterator-iterator_options2] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_dynamic_table[hdf5] - AttributeError: 'VectorData' object has no attribute 'set_data_io'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_simple_dynamic_table[zarr] - AttributeError: 'VectorData' object has no attribute 'set_data_io'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[hdf5-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-unwrapped-<lambda>-data_iterator_options0-timestamps_iterator_options0] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-generic-SliceableDataChunkIterator-data_iterator_options1-timestamps_iterator_options1] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_defaults.py::test_time_series_timestamps_linkage[zarr-classic-DataChunkIterator-data_iterator_options2-timestamps_iterator_options2] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-unwrapped-<lambda>-iterator_options0] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-generic-SliceableDataChunkIterator-iterator_options1] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[hdf5-classic-DataChunkIterator-iterator_options2] - TypeError: H5DataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-unwrapped-<lambda>-iterator_options0] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-generic-SliceableDataChunkIterator-iterator_options1] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_time_series_override[zarr-classic-DataChunkIterator-iterator_options2] - TypeError: ZarrDataIO.__init__: unrecognized argument: 'data_io_kwargs'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_dynamic_table_override[hdf5] - AttributeError: 'VectorData' object has no attribute 'set_data_io'
FAILED tests/test_minimal/test_tools/test_backend_and_dataset_configuration/test_helpers/test_configure_backend_overrides.py::test_simple_dynamic_table_override[zarr] - AttributeError: 'VectorData' object has no attribute 'set_data_io'
FAILED tests/test_ecephys/test_mock_recording_interface.py::TestMockRecordingInterface::test_conversion_as_lone_interface - AttributeError: 'NoiseGeneratorRecording' object has no attribute 'rename_channels'
========================================= 23 failed, 244 passed, 3 skipped, 50 warnings in 32.42s ==========================================
 * ERROR: sci-biology/neuroconv-0.4.8::science failed (test phase):
 *   pytest failed with python3.11
 * 
 * Call stack:
 *     ebuild.sh, line  136:  Called src_test
 *   environment, line 3902:  Called distutils-r1_src_test
 *   environment, line 1928:  Called _distutils-r1_run_foreach_impl 'python_test'
 *   environment, line  722:  Called python_foreach_impl 'distutils-r1_run_phase' 'python_test'
 *   environment, line 3505:  Called multibuild_foreach_variant '_python_multibuild_wrapper' 'distutils-r1_run_phase' 'python_test'
 *   environment, line 3062:  Called _multibuild_run '_python_multibuild_wrapper' 'distutils-r1_run_phase' 'python_test'
 *   environment, line 3060:  Called _python_multibuild_wrapper 'distutils-r1_run_phase' 'python_test'
 *   environment, line 1154:  Called distutils-r1_run_phase 'python_test'
 *   environment, line 1851:  Called python_test
 *   environment, line 3789:  Called epytest 'tests/test_minimal' 'tests/test_ecephys'
 *   environment, line 2484:  Called die
 * The specific snippet of code:
 *       "${@}" || die -n "pytest failed with ${EPYTHON}";
 * 
 * If you need support, post the output of `emerge --info '=sci-biology/neuroconv-0.4.8::science'`,
 * the complete build log and the output of `emerge -pqv '=sci-biology/neuroconv-0.4.8::science'`.
 * The complete build log is located at '/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/build.log'.
 * The ebuild environment file is located at '/var/tmp/portage/sci-biology/neuroconv-0.4.8/temp/environment'.
 * Working directory: '/var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8'
 * S: '/var/tmp/portage/sci-biology/neuroconv-0.4.8/work/neuroconv-0.4.8'